GENERAL REPORT

ON THE OPERATIONS

OF THE
GREAT TRIGONOMETRICAL SURVEY OF INDIA,

DURING
1866-67,

Prepared for submission to the Government of India.
 Lieut.-Colonel J. T. Walker, R.E., F.R.S., \&C., - SUPERINTENDENT G. T. SURVEY.

IT IS REQUESTED THAT TH
Paper may be returned to THE INDIA OFFICE (RECORD Department).

PRINTED AT THE OFFICE OF THE SUPERINTENDENT G. T. SURVEY.

$$
\frac{\text { к. }}{1867}
$$

GENERAL REPORT

ON THE OPERATIONS

OF THE

GREAT TRIGONOMETRICAL SURVEY OF INDIA,

DURING

1866-67,

Prepared for submission to the Government of India.

BY
Lieut.-Colonel J. T. WALKER, R.E., F.R.S.,
 SUPERINTENDENT G. T. SURVEY.

printed at tie office of tile soperintendent a. t. surter.
t. feightlet.
1867.

the oprrations of the GREAT TRIGONOMETRICAL SURVEY OF INDIA

IN 1866-67.
(1.) These operations may be classified as follows:-
I. Trigonometrical; the Longitudinal Series of triangles between Calcutta and the Eastern Frontier.
II. Trigonometrical; the Eastern Frontier Series.
III. Trigonometrical; the Meridional Series which will connect Jubbulpore with Madras.
IV. Trigonometrical; the Longitudinal Series west of Calcutta.
V. Trigonometrical; the two Series on the meridian and parallel of Bangalore.
VI. Trigonometrical; the Series on the meridian of Mangalore (75°).
VII. Topographical; the Surveys of the districts of Kumaon and Gurhwal, and the stations of Masoori and Landour.
VIII. Topographical; the Surveys of the provinces of Kattywar and Guzerat.
IX. Geographical; exploration of Trans-Himalayan regions.
X. Astronomical ; determining the latitudes of certain stations on the Calcutta Longitudinal Series.
XI. Astronomical; determining the latitudes of certain stations on the Series on the meridian of 75°.
XII. Miscellaneous ; Leveling Operations, and arrangements for the future better protection of the stations of this Survey.
XIII. Geodetic and Magnetic ; determining, at certain stations of the Great Arc, the number of diurnal vibrations of two pendulums, the property of the Royal Society of London, and measuriug the Magnetic Dip, Declination, and Total Force, at the same stations.
XIV. Computations ; the final examination, reduction and publication of the Trigonometrical and Astronomical Observations.
XV. Cartography; the preparation and publication of the various Charts and Maps.
（2．）The out－turn of work has been as follows ：－Principal Triangulation＊ with the great theodolites， 116 triangles（the errors of which are shown in the margin），covering an area of 21,800 square miles，and completing about 709 miles in length of the several chains of triangles； secondary and minor triangulation with theodolites of various sizes， 7,386 square miles，defining the posi－ tions of $\varepsilon 86$ points，of 162 of which the heights were also determined；Cadastral Surveying，on the scale of 12 －inches to the mile， 2,121 acres；Topographical Surveying，on scale of 2 －inches to the mile， 617 square miles，and on scale of 1 －inch to the mile， 1,620 square miles；Spirit－Leveling， 156 linear miles；and Geo－ graphical exploration，along a line of route about 1,200 miles in length，in Great Thibet．

Sories．	Probable Lirors of Ob ． serred Angles．		Firors of Triangles．	
		茄	莒	臬
I ．．．	93	$\pm 0^{\prime \prime} 2 \cdot 2$	11	$0^{\prime \prime} \cdot 49$
II ．．．	99	$0 \cdot 96$	33	0.50
III ．．．	57	0.20	19	$0 \cdot 50$
IV ．．．	51	0.22	17	0.38
V ．．．	57	0.19	19	0.57
VI ．．．	51	0.24	17	0.52
Avernges		$\pm \cdot 26$		\pm－50

（3．）I proceed as usual to report on the general operations of the respective Survey Parties and Offices；further details will be given in the Appendices，which contain selections from the annual Narrative Reports of the Executive Officers，and a special Report by Captain T．G．Muntgomerie，on the Trans－Himalayan Explorations．

No．I．－TRIGONOMETRICAL．

THE EAST CALCUTTA LONGITUDINAL SERIES．

（4．）This chain of triangles crosses the districts of Jessore，Furreedpore，

Prisonnel．

Lieut．H．R．Thuillier，R．E．，Surveyor 3rd Grade．
Mr．C．J．Neuville，Civil Assistant 4th Grade．
＂F．W．Ryall，Sub－Assistant 2nd Grade．
＂G．A．Harris，Sub－Absistant 3rd Grade．
＂W．J．O＇Sullivnn，Sub－Assistant 3rd Grade．

Dacca，Backergange，Bhullooah，and Tipperah， and extends from the meridian of Calcutt：to the Eastern Frontier．It was commenced in 1863 by Lieutenant Thuillier，R．E．，who has had the satis－ faction of completing it during the present year．

[^0](5.) Though originally intended to be formed of triangles arranged in polygonal figures, in order to afford mutual verification, and to cover the largest possible area, circumstances made it necessary to abandon this inteution, and to carry out the series as a chain of single triangles. Many plautations of cocoa-nut, betcl-nut, and other valuable trees, and an extensive amount of forest and jungle, were met with, while the ground was a level plain, devoid of hills, undulations, or even mounds of any kind. Thus, in order to carry on the triangulation, it was necessary to surmount the curvature of the earth by building lofty towers at each of the stations of observation, and to cut openings or rays through the forests and other obstacles on the sides of the triangles, to cnable the contiguous stations to be mutually visible. From long experience it has been found more economical and expeditious, as a rule, to clear away all obstacles on the lines, than to raise the towers materially higher than is necessary to surmount the earth's curvature. But in this series either process would have been very expensive; the prices of materials and labor had risen enormously, and very heavy compensation had to be paid for the trees which had to be felled on the lines; thus it became necessary, after the completion of the first polygon, to alter the design of the triangulation to a chain of single triangles, which involves a minimum amount of line cutting and station building.
(6.) The direct distance spanned by this Series from the side of the Calcutta Meridional triangulation where it commences, to that of the Eastern Frontier Series where it terminates, is 210 miles, and the number of triangles is 41 .
(7.) It might be supposed that an undertaking of this nature, commencing in the vicinity of the town of Calcutta, and crossing districts, some of which have been longer under the British Government than any other portion of the Indian Empire, would be a simple and easy operation, in comparison with the triangulation in other parts of the Empire. But the very reverse has been found to be the case; for the portion of Eastern Bengal through which the triangulation was carried is so intersected with rivers and tidal creaks, and so liable to be flooded when rain falls or the rivers rise, and the district roads are so few and bad, that it was always more or less difficult, and often impossible to move about from point to point, and the Surveyors have repeatedly been delayed for days together on the bank of a river, waiting for a favorable turn of the weather to permit of their crossing in the fragile native boats which were alone available for the purpose. The difficulties arising from the absence of hills, undulations, or even artificial mounds, which contribute so much to the speedy and easy completion of trigonometrical operations, have already been described. Besides which, the country appears to have been unusually unhealthy during the last three years, and the Survey Parties have suffered severely in consequence, no less than 14 per cent. of the native establishment having died of fever and cholera in the season of 1865-66. Thus the difficulties to be combatted with and surmounted have been unusually great, and Lieutenant Thuillier is to be commended for having conducted his operations to a successful termination.
(8.) The operations of the field season under review comprise the measurement of 11 principal triaugles, nearly equilateral, extending over a direct distince of 62 miles, and covering an area of 530 square miles; a verificatory azimuth was observed; several secondary points, and 13 trijunction stations of the Revenue Survey Department, were fixed, which will serve to connect the operations of the two Surveys, and caable the fiscal maps to be projected on correct co-ordinates; 222 miles
of lines were cleared through jungle and forest all more or less dense; and 5 stations were selected in advance on the new triangulatiun, . which will now be undertaken by Lieutenant Thuillier, and which will trend northwards along the meridian of 90° from the Series recently completed, until it reaches a side of the Assam Longitudinal Series, somewhat to the west of Goalpara.

No. II.-TRIGONOMETRICAL.

THE EASTERN FRONTIER SERIES.

(9.) This triangulation traverses the Eastern Frontier, and, in previous years

Personnel.
W. C. Rosencrode, Esq., Asgist. Surreyor 1st.Grade. Mr. H. Bererley, Civil Assistmint 3rd Grade.
W. C. Pricr, Sub-Assistant 3rd Grade.
, A. Moore, Sul-Assistant 4th Grade. had been carried down from Assam, across the Kossia and Jynteah hills, through British and Foreign Tipperah, and along the hill frontier of the districts of Chittagong and Akyab, to within a short distance of the town of Akyab. During the last field season the triangles were carried in a south-easterly direction through the province of Arracan, for a distance of about 166 miles, the operations closing on the hills between Tongoup and Prome, which form a portion of the great range dividing Arracan from Burma. This range is about 100 miles broad at the part which is crossed by the triangulation, and is quite uninhabited; consequently, the arrangements for supplying food to the men of the Survey establishment, and for obtaining workmen to construct paths to the hill summits, for the passage of the large theodolite, and for clearing the rays of the numerous forest trees which had to be cut down, were very troublesome, and caused much anxiety. Happily Mr. Rossenrode, the officer in charge of these operations, has had much experience in overcoming difficulties of this nature, and possesses considerable energy, tact and judgment; he has managed to accomplish an unusually large amount of work, of excellent quality, in the face of all the difficulties with which he has had to contend.
(10.) The out-turn of work consists of 33 principal triangles, arranged so as to form 6 quadrilateral figures and a double polygon, stretching over a direct distance of 166 miles, and covering an area of 3,314 square miles; an azimuth of verification was also measured. In the course of the preliminary operations for the triangulation of next season, 13 stations were selected over a distance of 92 miles in advance, and 180 miles of road were cleared through forests; 2,520 square miles of secondary triangulation were also executed, in laying down the positions of 25 points of importance for topographical operations.

No. III.-TRIGONOME'TRICAL.

THE JUBBULPORE MERIDIONAL SERIES.

(11.) This triangulation emanates from the great Longitudinal Series
connecting Karachi with Calcutta, and trends southwards on the meridian of 80^{\prime},

Pbisonnel.

G. Shelverton, Esq., Assistant Surveyor. Mr. M. C. Hickie, Civil Angistnut 4til Grado.
, F. Bell, Sub-Assistant 1at Grade.
, L. J. Pocock, Sub.Assistant 3rd Grade.
, A. Wrixon, Probationary Sub-Assigtant. laving the towns of Jubbulpore and Madras near its northern and southern extremitics. In previous years the triangulation between the parallels of 24° and $20^{\circ} 32^{\prime}$, which passes over portions of the Saugor and Nerbudda districto and the Central Provinces, had been completed by Mr. Shelverton, while that between the parallels of $16^{\circ} 25^{\prime}$ and 13°, which passes over the districts of Guntoor, Nellore, Northern Arcot, and Chingleput, had been completed by Captain Basevi. Thus a belt of rather more than 4°, between the parallels of $20^{\circ} 32^{\prime}$ and $16^{\circ} 25^{\prime}$, remained to be completed. Mr. Shelverton has succeeded during the present year in extending the triangulation of the northern section down to the parallel of $18^{\circ} 35^{\prime}$, by 19 principal triangles, arranged so as to form two hexagons and a heptagon, and covering an area of 5,546 square miles; stations were also selected in advance down to the nearest side of the southern section, which will enable a symmetrical junction to be effected by means of 4 polygonal figures. Azimuths of verification were observed at three of the principal stations.
(12.) The country through which the operations were carried is notoriously unhealthy, but this year the Survey establishments suffered less than usual, though the number of Europeans and natives who were prostrated for a time by illness was sufficient to cause much embarrassment and anxiety. Fortunately the Party entered the valley of the Wein Gunga after a sudden and severe visitation of cholera and typhus fever had disappeared; but its traces were everywhere visible, more particularly in the beds of streams, in which corpses had been hastily buried, and covered over with brambles; cremation had apparently been abandoned as the mortality increased, though at one village the encamping ground was found to be strewed with charred human bones. The zeal and energy which Mr. Shelverton has displayed, and the success with which he has carried his operations through every difficulty, are very commendable.

No. IV.-TRIGONOMETRICAL.

THE WEST CALCUTTA LONGITUDINAL SERIES.

(13.) For the reasons which have alrendy been explained in para. 52 of my

Pbisontrel.

H. Keelan, Esq., Suryeyor 3rd Grade.

Mr. H. E. Keclan, Sul-Ageistant 1et Grado.
${ }_{n}$ H. Pegchere, Sub-Asaistant 3 rd Grado.
" J. Trotter, Sub-Aesistant 3rd Grade.
n E. J. Connor, Sub-Assistant 4th Grade. Administration Report for 1864-65, it was found necessary to revise this Series, which was executed in the years 1825 to 1830 with instruments of such inferior quality that the triangulation will not suffice to serve as an adequate basis for the several meridional chains of triangles, no less than 15 in number, which have been or will have to be carried from it northwards to the Himalayas, and southwards to the east coast of the Madras Presidency. In former years the revisionary operations had been carried from the Great Arc (in longitude $77 \frac{1}{2}^{\circ}$) eastwards as far as the meridian of 85°, leaving $3 \frac{1}{2}^{\circ}$ to be done in continuation to complete the rovision by bringing it up to the Calcutta base-line.
(14.) During the present year Mr. Keelan las extended the operations to the meridian of 87° by 17 triangles, arranged so as to form a double polygon, and a pentagon, and covering an area of 7,270 square miles. Stations were also selected in advance as far as is necessary for the completion of the operations, which it is hoped will be accomplished next field season. It is feared however that many diffculties may be met with in clearing the lines of the trees which bave sprung up since the stations were first built; the inhabitants of the district are proverbially litigious, and disinclined to assist in any operations to which they are not accustomed; in consequence of the want of any legislative enactment to support the officers of the Survey Department, much time will be lost both in obtaining the sanction of the villagers to the ray cutting, and in getting them to assist in the operations. But I feel that I can repose every confidence in Mr. Keelan's tact in conciliating the people of the district, and securing their co-operation, and I have every expectation therefore that the next field season will witness the successful completion of this triangulation, which is all that is now required to finish the operations of this Survey in the extensive regions between the meridian of Bikaneer and that of Calcutta, the parallel of Calcutta, and the Himalayan mountains.

No. V.--TRIGONOMETRICAL.

THE TWO SERIES, ON THE MERIDIAN AND PARALLEL OF BANGALORE.

(15.) The longitudinal triangulation had been carried along the parallel of 13° from Madras westwards to within a short

Personnel.

Lieut. W. M. Campbel, R.E., Asoist. Snrveyor.
Mr. A. W. Donnelly, Civil Asaistant 4th Grade.
*J. W. Mitchell, Sub-Aseistant 2nd Grade.
" O. V. Norris, Sub-Assistant 4th Grade.
" C. D. Potter, Sub-Assistant 4th Grade.
distance of Bangalore in the preceding year. This year it has been extended 40 miles further, to a point west of Bangalore, where it will eventually be met by a series of triangles from Mangalore, to be executed by the Bombay Party. On reaching this point the operations were diverted to the meridian of Bangalore, and carried southwards a distance of 56 miles towards Cape Comorin. In all 19 triangles were measured, arranged in polygonal figures, and covering an area of 3,044 square miles.
(16.) In my Report for 1865-66 I stated that two contiguous triangles which had been measured in that year had been injuriously affected by the grazing of the rays of light against the slope of an intervening hill, on the side common to both triangles; it was therefore necessary to reject these triangles, and introduce new ones free from these objectione; this has now been effected, and with marked benefit, the errors of the new triangles averaging $0^{\prime \prime} \cdot 72$, while those of the old ones averaged $3^{\prime \prime} \cdot 85$.
(17.) In the course of the preliminary operations for next season, 15 stations have been selected, and the triangulation has been laid out in advance for a distauce of 92 miles.
(18.) A site for the measurement of a base line of verification has also been selected in the vicinity of Bangalore. Here one of the first base lines of the Trigonometrical Survey was mensured by Colonel Lambton in the year 1804, but with instruments so rude, in comparison with Colby's apparatus of compensated bars and microscopes, which was brought out to this country in 1830 by Colonel Everest, and has been used in the measurements of the lines on which nearly the whole of the triangulation of the Empire has been based, that Colonel Lanbton's base would be quite inadequate to serve the purpose of verifying the triangulation of the present day. Moreover some uncertainty exists as to his unit of measure. Consequently, it is indispensably necessary either to re-measure the old base, or to measure a new one. The former alternative would have been preferred, and might have been carried out, as the terminal marks are still in existence and in good prescrvation, but the surface of the country has undergone many clanges in the period of upwards of sixty years which has elapsed since Colonel Lambton was engaged in his labors; large tanks for irrigation purposes are now to be met with on various parts of his line, and a railroad crosses it on a lofty embankment. Thus it became necessary to select a new line for the base, which I hope to measure during the ensuing season, and to connect with the old line by appropriate triangulation.
(19.) Lieutenant Campbell has displayed much energy and ability in his operations, and though often retarded by causes beyond his control, has succeeded in accomplishing a large amount of work. His great theodolite was out of order, and its defects had to be corrected before it could be used; in doing this Lieutenant Campbell received valuable assistance from Mr. Doderet, mathematical instrument maker to the Madras Government, but all the delicate corrections and adjustments had to be made by himself. Before entering the ghats to the south of Bangalore, he endeavored to ascertain the most healthy season for field operations, and was informed that the months most favorable for observations were "simply deadly from fever;" happily he did not permit this to deter him, and by a rare good fortune his camp was never so free from fever as it has been during the present field season.

No. VI.-TRIGONOMETRICAL.

THE MANGALORE SERIES, MERIDLAN 75°.

(20.) The triangulation on this meridian will, when completed, be of a length

Perbonnel.

Lieut. II. Trotter, R.E., Assistant Surveyor.
Mr. G. Ancling, Sub-Assistant 2nd Grade.
n A. Christio, Sub-Assistant 3rd Grado.
n J. Bond, Sub-Aesiatant 4th Grade. equal to that of the Great Arc, and considerably longer than any other meridional series in India. It will extend from the mountains of Kashmir and Ladak, on the parallel of 35°, to the parallel (13°) on which the towns of Madras, Bangalore and Mangalore are situated. Of the 22° comprised between these parallels rather more than 19°, bringing the triangulation down to $15 \frac{1}{2}^{\circ}$, had been completed in former years. Thus, when Lieutenant Trotter commenced his operations in the present year, about 180 miles remained for completion; half of this has been done in the present year, by the measurement of 17 principal triangles, arranged in polygonal figures, and covering in area of 2,142 square miles.
(21.) Under ordinary circumstances the triangulation should be finished in another ficld season, but it has now reached the dense and deadly jungles of North Canara, which can only be traversed with impunity by Europeans or unacclimatized natives during two or three months of the year; these, unfortuately, occur at the time when the villagers burn the grass in the jungles, whereby the atmosphere becomes so obscured by smoke and for that it is almost impenetrable by the signals employed in the observations; thus the progress of the work may be much retarded.
(22.) Lieutenant Trotter took the field in November, and employed himself for some weeks, under my instructions, in executing some minor triangulation in the Indarpoor talooka of the Poona district, to fix points for the use of a Revenue Survey which is now in progress, under the superintendence of Major Francis. He then went to Goa, to measure three triangles which were required to complete the link conuecting the Mangalore with the South Konkan Coast Series.
(23.) From the Governor and officials of the Portuguese settlement at Goa Licutenant 'lrotter received most cordial assistance ; orders were issued to the Cus-tum-house authorities all over the settlement to pass the baggage free not only of custom dues, but of the annoyance of examination and search; sepoys were also attached to the camp, to aid in procuring supplies. But the settlement appears to be almost destitute of good roads, or even fair footpaths; it is intersected by numerous rivers, and thus nearly all travelling is done in boats, and the Governor himself is said not to possess a hurse. Consequently it was with no small difficulty that the large theodolite was carricd up from the banks of the rivers up to the stations of observation ou the summits of the adjoining hills, notwithstanding all the assistance which was afforded by the Portuguese officials.
(24.) By the time that the triangulation was completed the season was sufficiently advanced for Lieutenant 'Trotter to enter the unhealthy districts of Canara. He ascended the ghauts, and was at work for four months, from January to May, in North Canara. Comparatively few of the party suffered from ill-health until after the fall of the first heavy rains in April; the season of fever then commenced, and the sick list increased with rapidity, until very few men were left fit for work. Lieutenant Trolter remained at his post until the month of May was far advanced, but on the very day that he had succeeded in finishing the measurement of the last of the angles required to complete the programme of the season's operations, he and his observatory assistant were struck down with fever, and were obliged to leave the district as quickly as it was possible to move the camp into a healthier locality. Lieutenant Trotter has sufticred so much that he has been compelled to proceed to Europe on sick leave, with the ohject of regraning his health in a better climate. His devotion to his work, and the judicious forethought which marks all his arrangements, are highly commendable.

No. VII.-TOPOGRAPHICAL.

the operations in Kashmir and Ladak, which were then approaching their termina-

Personnel.

Licut. T. T. Carter, R.E., Survegor 3rd Grade.
" A. Pullan, Staf Corps, Aesietant Surtegor 1st Grude.
J. Jill, R.E., Assiet. Surroyor 2nd Grade.

Mr. E. C. Ryall, Ciril Assistant 3rd Grade.
J. Peyton, Ciril Asuistant 3rd Grade.
" J. Low, Sub-Absistant 1at Grade.
n G. W. E. Atkinson, Sub-Assist. 2nd Grade.
" C. Braillanaite, Sub-Assistant 2nd Grade.
" H. Todd, Sub-Assistant 4th Grade.
" C. Hryson, Sub-Aesistant 4th Grade.
" A. Low, Sub-Assiotant 4th Grede. tion, and have since been completed. The whole of the Kashmir Party is now employed in Kemaon and Gurhwal, with the exception of certain assistants who were compelled to proceed to Europe on sick leave on the close of their arduous labors in the stupendous ranges of the northern Himalayas.
(26.) In order to facilitate the introduction of a change in the style of hill drawing from the geographical scales of four or eight miles to the inch, which were used in the provinces of Kashmir and Ladak, to the topographical scale of one mile to an inch, which is required for the delineation of districts which have long been under British rule, and are well cultivated and crowded with villages, it was necessary to practise the Surveyors in delineating ground on a larger scale than that to which they had previously been accustomed. For this purpose I determined to employ them in making a survey of the stations of Masoori and Landour, on the scale of 12 -inches to the mile, to replace the old Revenue survey which was made in 1844 by Major Browne, and which does not contain more than half the number of houses that are at present in existence. This work is carried on in the recess season, so as to interfere as little as possible with the progress of the field operations of the survey of Kemaon and Gurhwal. 4,353 acres were completed up to the date of my last report, and 2,121 acres have been subsequently added. Almost the whole of that portion of Masoori in which houses are numerous, and the greater part of Landour, have now been finished; some of the maps have already been printed, and are available to the public, and additional maps will soon be ready for publication.
(27.) The operations in Kemaon and Gurhwal have proceeded satisfactorily, and Lieutenant Carter, who supervised the whole of the field work, has done all in his power to ensure the accuracy of the topography, by making a scrupulous examination of the work of each Surveyor, and enforcing the principle that a compara-

Lieut. Pul	224 squaro miles.	
Mr. E. C. Ryall, ...	401	"
"J. Pcyton,	262	$\%$
"J. Low, ...	182	"
-C. Uraithwaite,	270	n
" H. Todd,	281	

(28.) The triangulation embraces an area of 1,124 square miles, fixing the

		Aren in aquare miles.	Number of points fixed.	Points of which the lieights warn determined.
Liout. Curter, ...		248	104	23
n lill, ...		473	88	37
Mr. Bryann, ...		405	91	52

(29.) The topography of the present year was carried on principally in the Gurhwal forests, which skirt the plains of Bijnour; the whole of the belt of land extending from Gaori Ghat on the Ganges to the Koti Rao Sote, the boundary
between Gurhwal and Kemaon, and including the Kotli, Patli, and Chokum Doons, has now been completed. Much interesting information has been collected by Lieutenant Carter and his senior assistants regarding the manners and customs of the inhabitants, the resources of the districts, their fauna and flora, and the numerous traces of a civilisation far higher than that of the present day, and probably anterior to the Mahomedan invasion of India, which have been met with. Similar researches will be carried on pari pussu with the topographical operations, in order to provide a collection of materials for the preparation of a descriptive report of the district, on the completion of the survey.

No. VIII.-TOPOGRAPHICAL.

THE SURVEYS OF GUZERAT AND KATTYWAR.

(30.) In my last Administration Report it will be seen that the Party em-

Pbisonnel.
Captain D. Nasmyth, R.E., Survegor 2nd Grade, (on special duty).

Erecutive (Ifficer.

Captain C. T. Haig, R.E., Surreyor 3rd Grade.
Lieut. Dummer, R.E., Assi. Surroyor 2nd Grade.
Mr. J. M'Gill, Civil Assistant 2nd Grade.
"A. D'Souza, Civil Assietant 4th Grade.
" N. Gwinn, Sub-Assistnot Brd Grade.
" C. H. McA'Fee, Sub-Assistant 4th Grade.
"T. Rendell, Sub-Assiernnt 4th Grade.
, E. N. W5att, Sub-Assishant 4th Grade.
Native Surceyors.
Wasojee Ragonauth, Gopal Narayen, Ramchander Viahnu, C'rishnajee Gorind, Gopal Vishmu, and four others. ployed in topographical operations in the Bombay Presidency was deputed to the Island of Bombay to construct, with the aid of a Revenue Survey party, a map of the Island, on a scale of sufficient magnitude to exhibit a correct outline of all the various estates and houses in the town and suburbs, because property of all descriptions had risen enormously in value, and in some parts land had become as costly as it is in London. When our Surveyors had completed a sufficient amount of triangulation and traversing to serve as a basis for the internal measurements which will be made by the Revenue Surveyors, they were transferred to the province of Kattywar, to resume the survey which was commenced in 1864, but suspended in the following year in consequence of a famine which visited the province in 1865.
(31.) When the Party was about to return to Kattywar, the Eombay Government suggested that its destination should be changed to Guzerat, as the want of a topographical survey of that province was greatly felt. But on being informed that the work alrealy done in Kattywar would be thrown away if the mapping and filling in of the details were deferred, His Excellency the Governor in Council considered this a sufficiently cogent reason for prosecuting the operations. But he was anxious that the survey of Guzerat should not be indefinitely postponed, and that a second party should be deputed to that province as early as possible.
(32.) No party is available for the purpose, nor can the survey of Guzerat be commenced for many years to come, without detriment to surveys in progrees elsewhere, unless a special party is organized for the purpose. Before submitting
any proposals on the proposition of the Government of Bombay for the consideration of the Government of India, it was necessary for me to make enquiries whether the fiscal surveys of the portions of the province belonging to the British Government, which have been made in the Revenue Department, might be connected together by triangulation, so as to furnish a portion of the details required for a good topographical map. I therefore, with the consent of the Bombay Government, directed Captain Nasmyth, R.E., who had recently been re-appointed to this Survey, on return from Europe, to proceed to Guzerat, and draw up a report on the operations of the Revenue Survey, showing to what extent they might be available for the purpose required.
(33.) His report, which has already been submitted for the consideration of the Government, shows that a good deal of the work of the fiscal surveys may probably be employed to assist in the formation of a topographical map; it comprises a variety of details which, in the words of Captain Nasmyth, "will suffice for all ordinary engineering requirements in the laying out of railways, tramroads, and canals for irrigation, such as the growing neccssities of this fruitful province are evermore urgently demanding." The fiscal surveys have been mapped on scales varying from 8 to 12 inches to the mile, and though they camot be expected to be free from error, being the work of native surveyors and draftsmen, who "as a body are paid materially less than village artisans," and can only use instruments of the rudest class, yet it is highly probable that the errors will be found to be practically inappreciable, when the village maps are reduced to the ordinary scales of topographical maps.
(34.) Still however there are certain peculiaritics of the fiscal operations which will have to be amended before a correct survey can be produced; for instance, in the village maps a tank is represented, not by its actual area, but by that of the whole of the surrounding waste ground, "the land in fact withdrawn from cultivation for the purposes of the tank;" again, the site of a village or town is represented, not by the area actually covered by buildings, but by the whole space " assigned by custom for village purposes, and defined ly the nearest limits of the surrounding fields;" thus the areas shewn are greatly in excess of those actually covered by the tanks and villages. Noreover there has necessarily been a total absence of any attempt to delineate the configuration of the ground, for when the fiscal surveys were commenced, it was decided that the qualifications for the conduct of topographical and fiscal surveys were so distinct "that any attempt to combine the two employments would certainly endanger, if it did not reader impracticable, the successful accomplishment of both."
(35.) I may conclude these remarks on the proposed topographical survey of the province of Guzerat, by recording my conviction that the survey should be commenced as soon as possible. The area of the whole province is stated by Captain Nasmyth to be 31,752 square miles, of which only 10,736 belong to the British Government, the remainder appertaining to independent and tributary Chiefs. 'The Revenue Survey has dealt with the British Collectorates only, and the existing maps of the province as a whole, are known to be rude, inaccurate, and unreliable.
(36.) I will now procced to report on the operations in Kattywar. When they were originally commenced, Major Keatinge, V.C., Political Agent, urged the necessity of undertaking, conjointly with the topegraphical operations, a minute
delineation of the boundaries of every village and estate, as the survey would then become "a complete work, tending directly to the facility of administration, and to the suppression of violent crime in the province." As this would greatly increase, and probably double, the cost of the survey, he suggested that the expenditure should be borne by the native Chiefs, to whom almost the whole of the province belongs, is they would be so much benefitted by the measure. I readily acceded to a proposal which would unquestionably increase the accuracy and general utility of the survey, without throwing any additional expenditure on the Government of India.
(37.) But when operations were resumed last year, Major Keatinge reported that "the tenor of several despatches lately received from Her Majesty's Government shows that it is not wished that measures of improvement should be urged upon the Kattywar Chiefs." He could not hope that they would willingly incur the expense, and lie considered that the boundary surveys must be abandoned, unless the Government were prepared to pay for them. Nothing further was decided until November last, when, in the course of my annual tour of inspection, I went to Kattywar to discuss the subject with Major Keatinge. It appeared to us to bo inexpedient to undertake a boundary survey of all the towns, villages and estates in the province, as this would entail an amount of expenditure which there might be some difticulty in meeting ; but, on the other hand, it seemed advisable to undertake a boundary survey of all the talookas, or chief sub-divisions of the native States, because, first, some of the principal difficulties connected with the political administration of the province arise from the disputes as to the boundaries of these talookas, and it is highly desirable that they should be demarcated and measured once for all; secondly, their delineation on the maps of the survey would greatly enbance the utility of the maps; and, thirdly, the measurements taken for the purpose would much increase the accuracy of the survey.
(38.) We therefore recommended that a small additional establishment should be entertained, at the cost of the Government, for the purpose of measuring the talooka boundaries, while the preliminary expenses of defining and demarcating the boundaries should be borne by the native Chiefs, who were believed to be ready to undertake this share of the operations. The Government has recently assented to these proposals, which will be carried out as soon as possible.
(39.) Another question, connected with the survey of Kattywar, had been discussed when the operations were commenced, but without arriving at any satisfactory decision. It was proposed that the survey should be executed on the scale of 6 -inches to the mile, after the methods of the Ordnance Survey of Great Britain, instead of on the scale of 1 -inch to the mile, by plane-tabling on the basis of triangulation, according to the methods which have long been employed in the Survey of India. Captain Nasmyth warmly advocated the introduction of the Ordnance Survey system, and his views were supported by the Bombay Government. But it is obvious that the application of this system, with its accurate delineation of minute details, to a province of which the area exceeds 20,000 square miles, must necessarily have either caused a considerable increase to the present annual cost of the survey, in providing a sufficient establishment to complete the additional measurements in a moderate period of time, or it must have indefinitely protracted the completion of the survey, if no additional eetablishment were provided. It was clear that no increase to the present expenditure would be sanctioned, while on
the other hand, it is certain that a good map of the province is urgently required; consequently the idea of assimilating the operations to those of the Ordnance Survey had of necessity to be abandoned.
(40.) But the ordinary modus operandi of the Indian Topographical Surveys is susceptible of a modification by which the accuracy and general utility of the maps may be increased, without any material increase of cost. It is customary to draw the details of the ground in the field sketches on the same scale as that adopted for the final maps, whereas all European Surveys which are intended for publication on the standard Indian scale of 1 mile to the inch are executed in the field on some larger scale, which is never less than double the scale for publication. The advantages of so doing are obvious, for it is impossible under the manifold difficulties and inconveniences of working in the field under exposure to all the vicissitudes of the weather, to draw the details with the full degree of accuracy which the scale for publication permits; consequently by the employment of a larger scale for the field work, errors which would otherwise have escaped observation become readily visible, and may at once be corrected; while the errors which pass unnoticed should be so minute as to become insensible when the field work is reduced to the scale for publication.
(41.) Now, by adopting this system, and executing the field work on a scale twice that of the maps for pullication, on the understanding that the ohject in view is not to introduce more details on the large scale field sketch than can be shown on the published map " without creating confusion and destroying" the unity of the general effect",* but to enable such details as are ordinarily shown on the published

- Vide the prinriples enunciated by Sir Andrew Waugl in his topographical instructions.
map to be delineated with a higher degree of accuracy than would otherwise be possible, the operations may be completed as rapidly as appears desirable, while the expense should not be materially increased; moreover, the field sketches will be of much greater use to the political authorities, for they will exhibit the boundaries of the talookas on a scale sufficiently large to serve the purpose of tracing their course in the settlement of the numerous disputes which arise regarding them. I have therefore directed Captain Haig, the oflicer in charge of the survey of Kattywar, to employ the scale of 2 -inches to the mile for his plane-tabling in the field, and retain the 1 -inch scale for the general map of the province.
(42.) Maritime surveys of the coast of Kattywar were made years ago by officers of the Indian Navy, and are now in general use. An application has been made to the India Office in London for the return of the original charts, which, having been constructed on larger scales than the published charts, should be placed in the hands of the topographical Surveyors, in order that the operations by land and sea may be accurately connected together. I am not aware that any attempt has yet been made to combine the details of the maritime charte with those of the land surveys in this country; but it is obvious that such a measure is necessary, to do full justice to both operations, and secure a more accurate and valuable map of the coast than is produced by either taken singly.
(43.) Doctor Oldham, the Superintendent of the Geological Survey of India, has recently drawn the attention of the Government fo certain questions which have been raised regarding secular changes in the relative level of the land and sea which are believed to be going on in various parts of the Bombay Presidency, and more
particularly at the head of the gulf which separates the province of Cutch from that of Kattywar. Dr. Oldham recommends that certain prints sloould be selected on the south coast of Kattywar, aud as far up the gulf as possible, and that the existing relative levels of land and sea should be determined at those points, by accurate tidal observations carricd over as long a period as possible, the tidal stations being connected ly lines of levels. Thus, by repenting the operations at a time sufficiently distant to allow the secular changes to reach an appreciable maguitude, this question, which is of much scientific importance, will be satisfactorily settled. The Government of India have sanctioned these measures, which will be undertaken by Captain Haig and his assistants as soon as possible.
(44.) The operations of the Kattywar Survey have progressed very satis-

anea in Square Mileg.		
		范
Lieut. Dummiler, ...	70	280
Mr. Mr'Gill,	2,100
" D'Souza ${ }^{\text {a }}$.	70	300
, Gminn,	140	\ldots
, McA'Fee, ...	70	...
" Rendell, ...	140	\cdots
"Wyatt,	140	\cdots

No. IX.-GEOGRAPHICAL.

explorations of trans-ifimalayan regions.

(45.) While Captain Montgomerie was carrying on the survey of Kashmir and Ladak, he conceived the idea of employing natives of the upper Himalayan vallies in making geographical explorations of the southern regions of Central Asia, which are situated between the boundaries of the British and the Russian empires. These men are permitted to travel without molestation, as traders or in other capacities, throngh countrics where Europeans would certainly be regarded with suepicion, and exposed to ill-treatment, and most probably would be murdered. It is only by means of native agency that any considerable portion of these littleknown regions is likely to be explored, until the British and Russian frontiers become united; and it is only by training men whose homes are situated on the border of a province that has to be explored, or who are familiar with the manners and custums of the inlabitants, speak the same language, and are of the same religion,
that any degree of success can be anticipated. Thus it is necessary to employ Pa thans to explore the northern and southern vallies of the Hindoo-Koosh range, the region between the sources of the Oxus and the Jaxartes, and the greater portion of the province of Atty-Shahr, or little Bokhara, in Eastern Turkustan, all which are mostly inhahited by a Mussulman population; while for explorations of Great Tibet, and the regions which are subject to the Chinese government, and mostly inhalited by a Budhist population, it is necessary to employ Bhotiyas, or Tibetans, the inhabitants of the upper vallies of the Himalayas which are subject to the British Government.
(46.) The explorers are taught to make a route-survey by taking bearinge with a compass, and pacing the distances; they are also tanght to take astronomical observations with a sextant, for determining latitudes; observations for determining absolute or differential longitudes are evidently beyond their capacities, but they soon learn to observe the meridian altitudes of certain of the principal stars with sufficient accuracy for all practical purposes. They are purposely not taught how to reduce their observations, nor supplied with astronomical tables, in order that they may not be able to fabricate fictitious observations; the resulting latitudes and the co-ordinates of the route are computed in this Office on the explorer's return. The astronomical latitudes serve the purpose of determining the correction which has to be applied to the latitudinal co-ordinates of the traverse, in consequence of variations in the length of the explorers paces when travelling over difficult or easy ground; a corresponding correction is applied to the longitudinal co-ordinates. This process is of course rude and approximate, but it is the only one that can be adopted in operations in which all surveying instruments must necessurily be concealed as much as possible, to prevent suspicion and opposition on the part of the inhabitants of the country. With all its disadvantages, it furnishes materials for defining the positions of the chief towns, which are vastly more accurate than any other materials in existence, and it furnishes a large amount of new geographical information.
(47.) The first exploration made in connection with the operations of this survey was that of the route between Ladak and Yarkand, aia the Karakoram Pass, which was effected by a native of the name of Mohamed-i-Hamid, who died shortly after his return to Ladak. It has been described by Captain Montgomerie in a report published by the Royal Geograplical Society. One result was the determination of the position of Yarkand to be in latitude $38^{\circ} 20^{\prime}$, longitude $77^{\circ} 28^{\prime}$ east of Greenwich, very approximately. The values adopted ly Klaproth, Humboldt, and Ritter are latitude $38^{\circ} 19^{\prime}$, longitude $76^{\circ} 18^{\prime}$, ncarly agreeing in latitude, but differing 70 minutes in longitude. In support of the shift of position to the east, it may be mentioned that the position of Kokan has been shifted in the most recent Russian maps from $41^{\circ} 23^{\prime}$ by $70^{\circ} 30^{\prime}$ to $40^{\circ} 18^{\prime}$ by $71^{\circ} 1^{\prime}$, that the position of Ilchi is now accurately known, and that the new co-ordinates of Yarkand assign it a position between Kokan and Ilchi, which agrees with the latest and most valuable itinerarics of this route, published in the Punjab "Report on the Trade and Resources of the Countries ou the North-Western Boundary of British Iudia."
(48.) The next exploration was that of the route between the Mansarowar lake and Lhasn, viâ Tadum, and between Tadum and Kathmandû, which is described at length by Captain Montgomerie in an accompaniment to this report. It extends over a distance of upwards of 1,200 miles, and affords an admirable base from which
explorations may be carried through Great Tibet to the eastern portion of the Tian Shan range, and the borders of the desert of Gobi. The native employed in this operation is a Bhotiya, a subject of the British Government; his work has been carefully examinel, and has satisfactorily stood every test which it bas been possible to apply ; and I feel very sure that Captain Montgomerie's digest of the operations, the translations from the Pundit's diary and field books, and the map of the Pundit's route will be accepted as a most valuable contribution to geographical science.

No. X.-ASTRONOMICAL.

Latitude observations On the parallel OF 23°.

(49.) This Party was employed in observing the latitudes of certain stations

Prisonnfit.
H. Taylor, Esq., Assistant Surreyor 2nd Grade. Mr. G. W. Atkinson, Sub-Assistant 2nd Grade.
on the Calcutta Longitudinal Series, near the extremities of the meridional chains of triangles which will eventually be converted into geodetic arcs. Observations were taken at three stations; the quality of the work appears to be good, but the amount is less than Mr. Taylor should have accomplished, as he has had considerable experience in operations of this nature. While marching back to head-quarters at the end of the field season, he became involved in a quarrel between some of his camp followers and the inhabitants of a village near Agra, and conducted himself in such a manner as to necessitate his dismissal from the Survey Department. A full report on this subject having already been submitted to the Government, it is now unnecessary for me to advert to it further than to record my regret at this unfortunate ending to a career which has hitherto been so honorable and useful.

No. XI.-ASTRONOMICAL.

LATITUDE OBSERVATIONS ON THE MERIDIAN OF 75

(50.) This Party was employed in determining the latitudes of certain stations Pemonnel. in the northern portion of the triangulation on the meridian of 75°, which I have already described in para. 20 of this Report as one of the

Lient. W. J. Heaviside, R.E., Asoistant Surveyor 2nd Grade.
Mr. J. Wood, Sub-Amintant 2nd Grade. G. Belcham, Sub-Asaistant 3rd Grade. longest chains of triangles in the Indian Survey. Lieutenant Heaviside, R.E., was appointed to the charge of the party on the transfer of Lieutenant Campbell to the Madras Presidency. Having had no previous experience in astronomical observations, he was
put through a course of training during last recess by Mr. Hennessey, under whose supervision he determined the latitude of the observatory at Masoori. On having mastered all the practical details of the observations, he proceeded to Umritsur, and commenced operations. He has succeeded in determining the latitudes of four stations between the parallels of 29° and 32°, by observations of 24 to 26 pairs of north and south stars of the Greenwich Seven-Year Catalogue at each station, each star being observed on eight days, with one of the large astronomical circles which were brought out to this country by Colonel Everest, and are described in his account of the measurement of the Indian Arc.
(51.) When the season was too far advanced for further observations, Lieutenant Heaviside made a minute examination of the trigonometrical stations on his meridian, to a distance of about 300 miles to the south of his last station of observation, in order to select the positions to which a preference might le assigned for future determinations of latitude, in their comparative freedom from local irregularities which might affect the direction of the plumb-line. He has sent in an excellent report on this subject, and his out-turn of work of all descriptions bas been most creditalle.

No. XII.-MISCELLANEOUS.

Leveling operations, and protection of the survey stations.

(52.) This Party was employed in carrying branches from the main line of levels of the Trigonometrical Survey to connect the levels of the Canal and Railway

Personnel.

C. Lane, Eaq., Surveyor 3rd Grade. Mr. L. Clirke, Ciril Assiatant 4th Grade. Ram Chund, Natice Leveler.

Departments at Delhi, Meerut, Saharunpore, Umballa, Loodiana, Lahore, and Mooltan, in order that the latter might be reduced to a common datum, as a preliminary to future publication. 156 miles of branch levels were executed independently by Mr. Lane and his native assistant, fixing the height of 329 bench-marks, in conformity with the rigorous method of procedure, which has been described briefly in former Reports, and is explained in detail in the introduction to the volume of Tables of Heights in Sind, the Punjab, N. W. Provinces, and Central India, which was published in 1863.
(53.) Mr. Lane was also directed to make arrangements for carrying out the measures described in para. 56 of my Report for 1865-66 for the protection of as many of the stations of this Survey as were within a convenient distance of his operations, and also to depute an assistant to repair the stations of the Great Arc, and place them in charge of the village officials. All the Executive Officers of this Department are now required to take similar steps for the protection of the stations which are added each year to the triangulation. Thus during the past field season 142 stations have been specially placed under protection.
(54.) Rules for the guidance of the officers in charge of all the British districts and native states in the three Presidencies have been circulated under the
orders of the Government of India, and I am constantly receiving communications on the subject from all quarters. There is therefore every reason to expect that the importance of preserving the stations of this Survey from wilful injury and the action of the weather, will not be lost sight of in future.

No. XIII.

PENDULUM AND MAGNETIC OPERATTONS.

(55.) In my Report for last year I stated that Captain Basevi had commenced

Personnel.

Captain J. P. Boseri, R.E., Surveyor 1st Grade. Mr. M. Lemarchand, Sub-Masistent 3rd Grade, , J. M'Dougnall, Sub-Assislant 3rd Grade. the operations for determining the force of gravity at certain of the stations of the Great Indian Arc, which had been suggested by General Sabine, the President of the Royal Society. For this purpose he had been supplied with two pendulums and other instruments, the property of the Royal Society, which had already been employed in similar investigations in other parts of the globe, and with which a complete series of observations had been made at the Kew Observatory shortly before the instruments were despatched to India, to facilitate the eventual combination of the results of the operations in this country with all previous or future operations of a like nature.
(56.) I may here repeat that a fact of great scientific importance was elicited from the results of the work of last year, that the density of the strata of the earth's crust under and in the vicinity of the Himalayan mountains is less than that under the plains to the south, the deficiency increasing as the stations of observation approach the Himalayas, and beiug a maximum when they are situated on the range itself. The stations at which observations were taken during the present year are fir remote from the influence of the Sub-Himalayan strata, and the results obtained at them are now only very slightly in defect of the theoretical values of the force of gravity; they thus tend to confirm the evidence of the first year's operations as to the deficiency of matter in the Sub-Himalayan strata.
(57.) With a view to imparting the utmost accuracy and precision to the determination of the number of vibrations made by each pendulum at the several stations of the Indian Survey, the President and Council of the Royal Society recommended that the observations should be made in a vacuum; the necessary apparatus for this purpose was constructed in London, and sent out with the penduluns. Numerous difficulties were at first met with in the management of the vacuum apparatus; the receiver is necessarily of considerable magnitude to admit of the vibrations of a pendulum of a length of 5 feet, and the powers of the airpuinp were found inadequate to the labor of repeatedly exhausting so large a body of air; moreover, the recciver was liahle to occasional leakage. All these difficulties however have been satisfactorily surmounted, and the appratus is now in such yood working order that the pressure can be reducel below 2 inches, and retained at an average of about 3 inches, throughout a set of observatione lasting eight or nine hours.
(58.) But in experimental investigations of thie nature it is often found that improvements which are introduced in order to remove known sources of error or uncertainty, bring to light others which had not previously been suspected. This has now happened in Captain Basevi's operatious; the vacuum apparatus which was supplied to enable the vibrations to be measured under so slight a pressure that the effects of any uncertainty in the determination of the co-efficicut of pressure might be reduced to a minimum, has admirally answered the purpose for which it was intended, and has further improved the quality of the observations by protecting the pendulums from the action of currents of air, and from the incidence of dust which often pervades the atmosphere in great quantities; the observations appear to be much more delicate and precise when a pendulum is swong inside the vacuum apparatus, than when it is swung in the air, the correction for pressure is reduced to a minimum, and the variations of temperature are slower, more uniform, and can be measured with greater accuracy. But, on the other hand, the correction for temperature is uncertain, and causes much embarrassment; its significance in the reduction of observations of a wide range of temperature is considerable, for a variation of 1° Fahrenheit alters the number of vibrations in twenty-four hours by nearly half a vibration.
(59.) Before proceeding to describe the steps which have been taken to determine this correction, I may observe that the temperatures are measured by a pair of thermometers inserted in a bar of the same dimensions as the pendulums, and of similar metal; the bar is fixed inside the receiver, and is consequently within a few inches of the pendulum under vibration. The calibration errors of the thermometers have been very carefully determined by comparison with a standard calibrated thermometer, and the index errors of the freezing points are ascertained in the usual manner from time to time. A further correction is however necessary, when the observations are made in a vacuum, for the exhaustion of the air reduces the pressure on the bulbs of the thermometers, and causes the column of mercury to fall, as may bo seen by placing a thermometer enclosed in an air-tight tube by the side of an unenclosed thermometer, and comparing theindications of both as the pressure is diminished. On the other hand, the friction of the particles of air against each other and against the sides of the receiver causes heat to be generated both in exhansting and re-admitting the air; the increase of temperature is not shown so readily by the enclosed as by the unenclosed thermometers, consequently the effects of the pressure on the bulb of the latter cannot be ascertained until a sufficient period of time has elapsed for both thermometers to be equally affected by the temperature of the air inside the receiver. If, meanwhile, the temperature of the observatory is changing, additional complications are introduced. However by patient observation and careful arrangements the effects of pressure on the bulbs of the thermometers have now been accurately determined, and found to be about two-tenths of a degree for 27 inches of pressure, varying of course with different thermometers.
(60.) The actual temperatures being ascertained, the next point is to determine the precise effect of a given variation in temperature on the number of vibrations in twenty-four hours. Hitherto it has been supposed that a knowledge of the co-cfficient of expansion of the metal of which the pendulum is constructed would suffice to enable this effect to be computed by the ordinary theoretical formula, and this supposition has been supported by the evidence of certain experiments which were made by General Sabine in 1824 with one of the pendulums now in India.

General Sabine observed the number of vibrations which the pendulum made at a station in London at the temperatures of 47° and 84°, and found that they gave a factor of expansion which coincides with the known factors of similar metals, as determined from direct measurement. But his investigations had been restricted to one of the two pendulums; the other had never been tested, and it was therefore necessary for Captain Basevi to ascertain its expansion. While so doing it was decided to extend the investigations to General Sabine's pendulum, because a period of nearly half a century liad elapsed since its expansion had been determined, and because it seemed desirable that as all the Indian observations are made in a vacuum, the observations for determining their temperature corrections should also be made in a vacuum.
(61.) Consequently Captain Basevi observed a complete series of vibrations at Kaliana, the northern station of Colonel Everest's Arc, in December 1865, under a temperature of 58°, and again in June 1866 , under a temperature of 89°, the pressure being about three and a-half inches in both cases. The resulting expansious of both pendulums were very consistent, but they were more than a tenth larger than that previously deduced by General Sabine for his pendulum, and indeed were larger than any previously deduced expansions of similar metals. It was therefore necessary to re-determine them by independent processes of investigation.
(62.) In the first instance, experiments were made by vibrating the pendulums in the Observatory at Masoori, 6,700 feet above the sea, under the natural pressure of the air, 23.5 inches, at the temperatures of 55° and 84°. Twelve sets of observations were made with each pendulum at each temperature, six with the face and six with the back of the pendulum turned towards the observer. Each set lasted nearly three hours, the three first, three last, and two intermediate coincidences being observed.
(63.) The expansions were then determined by direct micrometrical measurement at the Survey Office in Dehra Doon, 2,300 feet above the sea. For this purpose two frames were constructed, each capable of carrying a pendulum when freely suspended in a vertical position; they were lined from top to bottom, on three sides, with metal cases, which were intended to contain hot water, for the purpose of raising the temperature of the pendulum to any desired point; they were further adapted to move on rollers in a tramway leading to the micrometer microscopes, which were firmly attached, one above the other, to a large pyramidal block of stone, resting on an isolated masonry pillar. The distance between the microscopes being 45.5 inches, fine marks were made at the same distance apart near the shoulder aud on the tail-piece of each pendulum. The greatest care was taken to prevent the pendulums from being injured by the removal of any portion of the metal; thernometers were attached to them temporarily by springs, the bulbs being plunged into oil cups made of wax and resin, which could be easily made to adhere temporarily to the surfaces of the pendulume, and might be removed at pleasure.
(64.) The pendulums were first compared together when at the natural temperature of the experimenting-room; then one of them was removed (in its frame) into an adjoining room, and heated by causing a stream of hot water to flow continuously through the metal cases, until the pendulum had acquired the desired temperature ; it was then brought back (in its frame, with the metal cases full of hot water) into the experimenting-room, and again compared with the other
pendulum which had remained at the temperature of the room. After a sufficient number of comparisons had been made to deduce the relative lengths of the heated and unheated pendulums, the former was allowed to cool down to the natural teinperature of the experimenting-room, and the latter was heated, and then both were again compared; twenty comparisons were thus made between the pendulums when both were cold, twenty-six when one was hot and the other cold, and as many more when the temperatures were reversed. The resulting equations of condition were reduced by the method of minimum squares.
(65.) The factors of expansion which have been deduced at Kaliana, Masoori and Dehra are as follows, for each pendulum, No. 4 being that employed by General Sabine, with which he obtained a mean factor of 000,01 by two sets of experiments, under an atmospheric pressure of 29.8 inches, in London, in the year 1824 :-

(66.) The above results indicate a greater degree of expansion at low than at high pressures; there are incousistencies between the determinations at Masoori and at Dehra, under a difference of only $4 \cdot 2$ inches of pressure, but these inconsistencies are probably due to the circumstance that a pendulum is uecessarily from its shape ill-adapted to investigations of this nature; in these pendulums, the "bob" alone contains about thirty-four cubic inches of metal, while the mass of the remaiuder is only thirteen cubic inches; consequently it is improbable that the metal will be of an uniform temperature throughout, for the variations of temperature must be slower in and near the bob than in any other part of the pendulum; the thermometers are however so placed as to take account of this as far as possible.
(67.) Still, making every allowance for errore in the above results, it is impossible to escape the conclusion that expansions determined by the vibrations of pendulums under a very low pressure are materially greater than those obtained by vibrations in the air, or by direct measurement. Whether this is due to an actual increase of expansion for a decrease of pressure, or to the action of other phenomena which are at present unknown or only imperfectly known, is a problem for future solution.
(68.) Captain Basevi was necessarily much delayed by having to undertake the above investigations, which were protracted into the middle of the late field scason. Nevertheless be was able to take complete sets of observations in the
usual manner at three stations of the Great Arc : Pahargurh, lat. $24^{\circ} 56^{\prime}$, Kalianpar, lat. $24^{\circ} 7^{\prime}$, and Ehnudpur, lat. $23^{\circ} 36^{\prime}$; he hopes in the ensuing field season to carry his operations down to Bangalore, lat. 13°.
(69.) During the present year he has commenced a series of magnetic observations, which will be carried on in future simultaneously with the pendulum operations. He employs one of the two sets of magnetic instruments, consisting of a unifilar magnetometer and declinometer, and a dip circle, which were constructed for the use of the Indian Survey, under the superintendence of General Sabine and Mr. Balfour Stewart, and tested at the Kew Observatory. The other set has been used at head-quarters, by myself at Masoori, and by Mr. W. H. Cole, M.A., at Delira, whenever leisure permitted.
(70.) The results of the observations which have been made hitherto are as follows:-

By Captain Basevi.

Station.	Month of olservation.	Dip and number of determinations.		Dcclination and number of determinations.		Total force in British units, and number of determinations.	
		-		- ,			
Masoori, ..	October 1866.	41 41.5	2	. .	\cdots	-•	.
Dehra Doon, .	Dec .66, Jan. 67.	$41 \quad 27 \cdot 6$	4	254.2 E	4	9.7229	7
Meerut, ..	January 1867.	$39 \quad 7 \cdot 2$	2	$245 \cdot 6 \mathrm{E}$	3	9.5473	3
Agra,	February ,	$36 \quad 1.4$	2	2 46.2 E	3	9.3449	4
Pahargarl,	March ,	$31 \quad 50 \cdot 3$	4	210.0 E	5	$9 \cdot 0914$	6
Kalinnpur, .	April ,	$30 \quad 17 \cdot 8$	2	I 49.0 E	2	9.0873	4
Ehmadpur, ..	April "	$\begin{array}{ll}29 & 53.8\end{array}$	2	2 6.2E	2	8-9531	4
At Head-Quarters.							
Masoori, ..	May 1867.	$411 \quad 39.9$	4	$237 \cdot 3 \mathrm{E}$	2	9.7526	4
Dehra Doon, ..	June ",	$41 \quad 30 \cdot 2$	3	.	.	$9 \cdot 7356$	3
" .	July "	$41 \quad 31 \cdot 2$	1	.	\cdots		\cdots
"	August ",	41 26.1	3	.	.	9.7244	2
" .	Sept. "	$41 \quad 29 \cdot 5$	2	.	.	9•7203	1

No. XIV.

THE COMPUTING OFFICE.

(71.) Mr. Hennessey and his assistants have been fully employed, not only in current duties appertaining to the reduction of the triangulation, but in a variety of
matters connected with the general operations of the Department. Airong the chicf

Peisonnel.

J. B. N. Eennesscy, Esq., Survejor Iat Grade, in charge.
Licut. Rogers, R.E., Asgistnat Surveyor.
W. H. Cole, Esq., M.A., Assistant Surveyor.

Computing Branch.
Mr. C. Wood, Sub-Aswistunt ist Grade.
Bahoos Gunga Perehad, Gopinl Chunder Sircar, Dwarkinnth' Jutt, Caly Mohun Gliose, und 13 native computers.

Printing Branch.

Mr. T. Keightley.
Photozincographic Branch.
Mr. C. G. Ollenbach. of these I may mention the verification of the old standards of lengrth of the Indian Survey; the determination of the factors of expansion of the pendulums by direct measurements, and the reduction of the results; the preparation of descriptive lists of upwards of 1,500 of the stations of this Survey in the three I'residencies of Bengal, Madras and Bombay, each officer in charge of a British district or native state having to be furnished with a separate list. Mr. Hennessey had also to train three oflicers in the general duties of this Department, and to teach the process of photozincography to three officers employed under the Surveyor General. His unwearied zeal and devotion to his duties, and the skill with which he accomplishes whatever he undertakes, deserve every commendation.
(72.) The verification of the standards of length of this Survey had become necessary for the following reasons:-The principal standards are two simple bars of iron, ten feet in length, known as standards \mathbf{A} and \mathbf{B}, which were sent out to India for Colonel Everest in 1832, with six compensated bars of iron and brass, also of a length of ten feet, intended for measuring base-lines. Standard A had been employed with the compensation bars at eight base-lines in different parts of India, and had travelled over a distance of many thousand miles. Standard B was sent back to Europe, to be lodged in the Royal Observatory at Greenwich. At each successive base-line it was found that the relative lengths of standard A and the compensation bars were altering, the difference increasing year by year; there were also variations in the lengths of the compensated bars inter se, but these were comparatively small; had there been only one or two compensated bars which exhibited this discordance with the standard, no doubt could have been felt as to their having altered, and not the standard, for they are necessarily by construction more liable to vary in length than a simple bar of metal; but as there were six compensated bars, and all told the same tale, it seemed possible that their lengths had remained nearly coustant, while that of the standard had changed.
(73.) The differences between standard A and the general mean of the six compensated bars are shown in the following table :-

Base Lines.	Year of measurement.	Excess of mean of six compensated bars over standard, in millionths of a yard.	Increment on value at Calcutta bave-line, in millionths of a yard.
Calcutta,	1832	$112 \cdot 19$.
Dehra Doon,	1835	$132 \cdot 59$	20-40
Sironj,	1838	14.30	$32 \cdot 11$
Bider,	1842	$183 \cdot 57$	71.38
Sonakoda,	1848	$178 \cdot 65$	$66 \cdot 46$
Chuch,	1854	183.38	71-19
Kurrachec,	1855	195.86	83.67
Vizagapatam,	1863	209.93	97.74

(74.) It is evident that any alteration in the length of the standard would necessitate the application of corresponding corrections to the lengths of all the base-lines, and the sides of the triangles dependent thereon; and that the results of the Indian geodetical operations could not be combined with those of similar operations in other parts of the world until these corrections had been determined and applied.
(75.) Consequently two new standards, each ten feet in length, one of steel, the other of bronze, were constructed for the Indian Survey under my superintendence, when I visited England in 1864. Fortunately, Captain Clarke, of the Ordnance Survey of Great Britain, was engaged at that time in making an elaborate series of comparisons between the several standards of length of England, France, Belgium, Prussia, Russia, India and Australia, and he obligingly undertook to compare the new standards with standard B, and with the English standards; he also determined the factors of expansion of the new bars, and the errors of the new standard thermometers, which were required to complete the apparatus. I have every reason to be much indebted to Captain Clarke, for his able and laborious investigations; they have been published at length, by order of the Secretary of State for War, in a volume entitled "Comparisous of the Standards of Length of Eugland, France, \&c."
(76.) The new standards arrived at Dehra in 1866. As soon as practicable they were compared, together, and with standard A. It was ascertained that their relative length had not been sensibly affected by the journey to India and change of climate, for the ineasures at Southampton and at Dehra differ by only 06 of the millionth of a yard, a smaller quantity than the probable errors of the determinations. The comparisons with standard \mathbf{A} show that the relative length of \mathbf{A} and \mathbf{B} is at present almost identical with what it was in 1834, when \mathbf{B} was determined by Colonel Everest, to be 1.28 millionths longer then A, whereas its excess is now 3.08 millionths. Captain Clarke has shown that the existing relation of to the stanlard ten-foot bar of the Ordnance Survey differs by less than one millionth from the relation in 1831, and "agrees all but precisely with the mean of the results of the comparisons between these bars in 1831 and 1846."
(77.) Thus it may be considered certain that the lengths of both the old Indian standards have not altered appreciably, and that the increment of nearly 100 millionths of a yard in the mean of the six compensated bars on standard A, which occurred between the years 1832 and 1863, must have been solely due to changes in the compensated bars.
(78.) The length of the standard six-inch scale of this Survey which determines the values of the compensated mieroscopes employed in the base-line measuremente, has hitherto been assumed to be exactly one-twentieth part of the length of standard A. The precise relation of these two standards has been recently determined, and found to agree so closely with the assumed value, that the requisite corrections to the measured basc-lines will not exceed half an inch in seven miles.

CARTOGRAPHY.

(79.) Mr. Scott has been engaged in compiling a new map of Central Asia,

Pergonyel.

W. H. Seott, Eeq., Civil Aesistant 1st Grade, and Chiof Drafteman.
6 native Draftemen, and 10 native epprontices.
based on fresh materials which have mostly been received from Russia, since the compilation of the map which was published by this Office in 1866. The new map is on a larger scale than its predecessor, contains a great deal of additional information, and has rectified the positions of a number of places of importance, chiefly in the provinces of Kokan, Kashgar and Yarkund. It is called "Turkestan, with the adjoining portions of the British and Russian Territories," and has been compiled in four sheets, two of which will be ready for publication in a few days; new editions will be issued from time to time, on the receipt of additional information.
(80.) A series of maps is also being prepared showing all the lines of levels which have been executed for canals, railroads, and the operations of this Survey, in the districts between and adjoining the Jumna and the Ganges; the levels are reduced to the common datum of the mean sea level of Karachi harbour. No little difficulty has been experienced in obtaining the several data, which are required to make the maps as complete as possible, from the different offices in which they are preserved; the labor of examination and correction is also very considerable; but the maps should be all the more valuable in consequence, and every person who has bad a share in the original leveling operations cannot fail to be gratified to sce his work published in a form which will ensure its preservation, and increase its general utility.
(81.) The maps of Kashmir and Ladak have now been completed and sent to England, to be engraved as parts of the Indian Atlas, on the scale of four miles to the inch; photozincographs, on the reduced scale of eight miles to the inch, will be prepared in this Office, and published as soon as possible, to serve as a pis aller until the engravings are completed and published; 18 charts of triangulation and streleton maps bave been zincographed, and 15 topographical and gengraphical maps have been photozincographed; 7,118 copies of these maps and charts, and 5,152 copies of forms for calculations and office work, have been printed, the former for issue to the public, the latter for employment in the Department.
(82.) An abstract of the out-turn of work executed by the Trigonometrical and Topographical Parties of this Survey during the year under review is given on the next page.

J. T. WALKER, Liedt.-Colonel R.E.,

$\left.\begin{array}{l}\text { Dehra Doon, } \\ \text { December 1867. }\end{array}\right\}$

abstract of ter odt-turn of work executed by the thigonometrical and topographical parties of the g. t. burvey, during the officlal year 1866-67.

	1	2	3	4	5	6	7	8	
Dracription or Detates.									
Number of Principal Stations,	12	19	19	16	20	13	\cdots	\cdots	99
Number of Principal Triangles completed, ...	11	33	19	17	19	17	116
Aren of Principal Triangulation, in square mlles, ...	530	3,314	5,546	7,270	3,044	2,142	\ldots	\cdots	21,846
Lengthe of Principal Series, in miles,	62	166	132	156	96	97	\cdots	\cdots	700
Average Triangular Error, in seconds,	$0 \cdot 49$	0.50	0.50	0.38	0.57	0.52	\cdots	...	\ldots
Average Probablo Errors of Angles, in seconds, $\pm \ldots$	0.24	0.36	$0 \cdot 20$	0.22	019	0.24	\ldots
Azimuthe Observed,	1	1	3	\cdots	\cdots	5
$\left.\begin{array}{c}\left.\begin{array}{c}\text { Number of Secondary Triangles, of which all three } \\ \text { angles have been observed, }\end{array}\right\} \mid \text {... } \quad \text {... }\end{array}\right\}$	18	3	1	...	\cdots	...	56	229	307
$\left.\begin{array}{ccccc}\begin{array}{c}\text { Area of Socondary } \\ \text { equare miles, } \\ \text { and } \\ \text { minor }\end{array} & \ldots & \ldots & \ldots & \ldots\end{array}\right\}$	238	2,520	\cdots	\cdots	\cdots	851	1,124	2,653	7,886
Lengthe of Secondary Series, in miles,	36	\cdots	\cdots	\cdots	100	\ldots	136
Number of Intersected Points,	4	25	...	\cdots	...	21	237	657	944
	10	21	1	...	\cdots	\ldots	112	162	306
Number of Rerentue Surrey stations fixed,	13	\cdots	\cdots	\cdots	\ldots	82	\ldots	...	95
Area Topogruphically Surreyed on acale of $\mathbf{1}$ inch $=$? 1 nile, in anduare miles, $\ldots \quad$...		\cdots	...	\ldots	\ldots	..	1,620	\ldots	1,620
$\left.\begin{array}{c}\text { Area Topograpthirally Survered on scale of } 2 \text { inches } \\ =1 \text { mile, in square milcs,... }\end{array}\right\}$	\cdots	\ldots	\cdots	\ldots	\cdots	\ldots	\ldots	617	617
$\begin{aligned} \text { Area Topographicully Surreyed on scale of } 12 \text { inches } \\ =1 \text { nile, in acres, } \end{aligned}$	\ldots	\ldots	\cdots	\cdots	\cdots	\cdots	2,121	...	2,121
Number of Priucipal Stationg selected in adrance, ...	5	13	...	\ldots	15	\cdots	\ldots	...	33
Lengthe of Approsimate Seriee, in uniles, ...	21	92	245	\cdots	92	\cdots	450
Number of Torere constructed,	\ldots	\cdots	\ldots	1	\ldots	1
Do. Platforme constructed for Principal Stations,	\ldots	14	17	13	15	6	...	\ldots	65
Do. Secondary Stations,	16	3	\ldots	\ldots	\ldots	42	61
Do. Miles of Rays cleared,	222	...	\ldots	70	\ldots	\ldots	...	\ldots	292
Do. Roads made,	6	180	...	22	...	21	...	\ldots	220
Do. Hill tope elcared of forest and jungle,	3	20	17	17	\ldots	8	\ldots	...	65
Do. Principal Stationswhose ciements werecomputed,	20	50	14	19	..-	6	...	29	138
Do. Secondary ditto, ...	90	72	40	\ldots	...	64	343	\ldots	609
Do. Preliminary Charts of Triangulation,	1	1	1	\ldots	...	\ldots	1	\ldots	4
Do. PrincipalStations placed under official protection,	0	16	...	\ldots	...	4		\ldots	29
Do. Tower Stations protected and closed, ...	10	\ldots	...	\ldots	\ldots	...		\ldots	10
Do. Platform, ...	\ldots	\ldots	\ldots	16	4		20

APPENDIX A .

EXTRACTS FROM THE NARRATIVE REPORTS OF THE
EXECUTIVE 0fFICERS IN CHARGE OF THE
TRIGONOMETRICAL SURVEY PARTIES.

(2.) The party, which consisted of the members as per margin, assembled at C'aleutta in

Lieut. II. R. Thuillier, R.E., Surresor 3rd Grade.
Mr. C. J. Nouville, Civil Assistmet $41 l_{J}$ Grade.
F. W. Ryall, Sub-Amsistant 2nd Grade.
" G. A. IIarris, Sub-Assistant 3rd Grade.
"W. J. O'Sullivan, Sub-Assistant 3rd Grude. the begiming of November, and after making the necessary arrangements for taking the field, the camp started by boats on the e8th November, proceeding through the Sundarbuns, vid Burrisal, to the left bank of the Megna river, up to which point the Series had been carried at the close of the field season of 1860-66.
(3.) The camp disembarked at Raipur, in the Bhullooal district, on the 9th December, and the assistants were then separated from the main camp for the various detached duties which had been allotted to them. Mr. Neuville was deputed to complete the final rays between the few stations near the Lastern Frontier left from the previous season's work. Mr. Ryall was ordered to execute a minor series of triangles from the side Kalishpur T. S., Kodalpur 'I. S., up the river Megua towards Dacca, for the purpose of comuecting that city. Mr. Harris was sent to make arrangements for erecting platforms at the towers from which observations were to be taken, and to make roads for the theodolite up to the three hill stations on the frontier. Mr. O'Sullivan remained with me to act as observatory recorder.
(4.) Before proceeding to give the details of the work of each party, I have the pleasure to report that the junction of the East Calcutta Longitudinal Serics with the Eastern Frontier Series was brought to a conclusion ou the 5th March.
(6.) The tract of country through which the triangulation was carricd this season was through the densely populated districts of British Tipperah and Bhullooah, from the left bank of the Megna river up to the Jastern Frontier hills. This part of the country is flat, and of a low level, aud, being subject to heavy rains, the greater portion is for half the year under water. All the open ground is cultivated with rice, and even in December these portious were still under water. It is also intersected by a net work of small rivers and nullahs, which are navigable for small boats during the rainy season, and communication is chicfly kept up by that means during those months; but during the dry season the village roads are resorted to ; these being merely pathways, are quite impracticable for whecled carriage. The want of roads is a great drawback, for I may say that there is only one road which has any claim to that name in the two districts, viz., that which leads from Dacca vid Comillah, skirting the hills to Chittagong. The most expeditious, and, in fact, the only method of carriage for a large camp during the dry months or surveying season is therefore by means of elephants. As I had procured the loan of five clephants from the Commissariat Department, I met with no difficulty on the point of carriage this ycar. It was intended that these elephants should be transferred permanently to the Survey Department, but, in consequence of a communication from the Commissary General, stating that these identical elephants had been trained to khedda work as koonkies, and therefore could not be spared, they were returned to the Chittagong khedda at the close of the field season, on the understanding that five other efficient animals would be issued to me in their place.
(7.) The triangulation passed through extensive plantations of betel-nut, cocoa-nut, and other valuable trees, in which those districts abound, and this, combined with the dense forcstjungle which skirts the banks of the rivers, caused a good dcal of delay in clearing our rays, and was a source of expense to our operations.
(10.) Considerable delay was experienced during the early part of the season in the principal observations from the thick mist and fog rhich invariably rose after sunsct, and quite
precluded any work being obtained to lamps. Up to the end of January I might almost say that no angles whatever were taken to lamps, nor even to morning heliotropes, for the mist rarely cleared oft before 9 or 10 o'clock in the morning. The period, therefore, each day in which horizontal angles could be observed was very limited. Later in the season the atmosphere got clearer, and I was able to push on more rapidly.
(11.) Before proceeding into the rajah of Tipperah's territory, I nddressed the Commissioner of the Division, reguesting him to apply to the rajah for a mooklitear, to accompany my camp while cngaged in his territory. This request was complied with, and the mooklitear, aud a small guard that came with him, rendered my camp every assistance that was necessary.
(12.) After completing the principal observations of the Series, I determined to revise one of the triangles (viz., Lakinagar, Gupti and Basakpur), in consequence of its triangular error (2.83 seconds in defect) being large, and as I had to pass those stations on my way back, it would not involve much material delay. I returned to Basakpur T. S. for this purpose on 11th March, and completed a fresh set of observations on 13th, which gave a difticrence in the mean of 4.68 seconds in defect from the original measure. I then proceeded to Gupti T. S. and Lakinagar T. S., respectively, and took an independent set of observations at each station. At Gupti the second set differed from the first by 5.56 seconds in excess, at Lakinagar by 6.14 seconds also in excess. This gave the triangular error by the new set of observations to be 4.10 seconds in exccss.
(13.) It is very difficult to account for these large discrepancies. The rays were perfectly clear, and passed over ordinary ground, viz., rice fields and village sites. The towers, which were hollow paka ones, the mark being referred to the ground, were well raised, which may be gathered from the fact that the vertical obscrvations from each of the stations were taken between the hours of 1 and 2 p. s., the time of minimum refraction. The instrument also was in apparently good working order. The first set of observations were taken in December and January, and the second set in March. At the former period the rice fichls are all under water, and the air is laden with moisture. At the time of my second visit the water had evaporated, so that the rays now passed over a dried surface of ground. On the first occasion the signals were invariably bad, and nearly the whole of the observations were taken to heliotropes, the lamps being invisible, owing to heary fogs. On the second occasion, in March, when the atmosphere was clearer, the signals were very fair indeed, and the greater portion of the observations were taken to lamps. It will be observed that the measures in each set of observations agree very fairly inter se, but there is one feature noticcable, that the values obtained from lamps are invariably larger than those obtained from heliotropes. These differences however are not unusually large, nor do they furnish any indication for anticipating the considerable constant difference that exists between the two sets of measures. I am thus led to the conclusion that it is owing to lateral refraction acting tolerably steadily, but in different degrees at different periods of the scason. The mean of the two sets have been used in the computations, which gives a triangular crror 0.68 seconds.
(14.) Before leaving the district of Tipperal, I received intelligence that the Haripur tower reguired some slight repair, I therefore sent a mason there with instructions to remedy it. On renching that place, he found that the arched openings, which had been bricked up on the completion of the ohservations, had been broken down, and the upper mark-stone dug up, but not tiken away. 'This must evidently bave been done from sheer mischief, and I addressed the mayistrate of the district on the subject, requesting him to institute an enquiry through the police. They failed however in ascertaining how and by whom the damage was committed. The chowkilar, in whose mehalla the tower is sitnated, and in whose charge it was placed, explained that, as his house was six miles from the village of Haripur, which contains only five houses, he seldom went there, and so was not aware of the damage done. Another instance occured of damage to a tower in the Bhullooah district, but not of such serions consequence. The arched openings, whirh hat been briekerl up, being mercly broken down, the mark-stone remaining untouched. The magistrate of Bhullooah, to whom I reported the circumstance, failed to reply to me, so I am not aware whether any steps were taken to discover the offenders.
(15.) The revision of the Gupti, Lakinagar, Basalepur triangle was completed on the 18th March, when the main camp became available to take up the approximate work of the brahmaputra Series. I had previonsly made arrangements for boats from Noacolly to conrey the party to our new ground, and on the 20th March I left Raipur, accompanied by Mr. O'sullivan. We proceeded up the Megna and Ganges rivers, and experienced bad weather, which delayed our arrival at Furreedpur till 25 th March. At this tinie of the ycar the "chota-bursat" sets in in Eastern Bengal, aceompanied with heavy north-westerly storms, mod though this weather couses great relief from the excessive heat experienced in Mareh, it is far from advantageous for carrying on survey operations in the ficld. The entire country is of such a low level that it requires very little rain to submerge it.
(16.) According to the instructions conveyed in your letter No, "116, dated 18th October 1866, this new undertaking is to consist of a direct series of triangles, arranged in quadrilaterals or polygons, emanating from the Last Calcutta Longitudinal Scries, and to run northwards along the meridian of 90°, as far as the Assam Longitudinal Scries. This meridian closely follows the course of the Ganges, Juboona, and Brahmaputra rivers, which run through a sandy soil, and shift their banks very considerably every monsoon. These rivers, as shown in the revenue survey maps which were executed about eight or nine years ago, are in many places quite unrccogaisable, and I therefore anticipate some difficulty in procuring permanent sites for my stations. On this subject, however, I cannot yet speak with confidence, and I trust, on revisiting the district after the present rains, I shall be able to report favorably.
(20.) I would here beg to recommend that the work for the ensuing field season may be confined to the approximate series, on account of the time it occupies to raise our towers. Owing to the moist climate of Bengal, these structures have to be made paka throughout. The bricks, which have to be moulded at the tower sites, take a considerable time to dry, before they can be burnt. The other necessary materials have to be conveyed from long distances, over a most difficult country for communication, in which labor is scarce and hard to procure, and rain often falls, to retard the progress of the operations. One assistant only will be available for this object. I therefore could not anticipate having a sufficient number of towers ready for observation before the middle of March, at which time of the ycar, as reported on in para. 15, the country is most unfavorable for travelling, and the difficulty in trausporting the hig theodolite at such a season would be very great; under these circumstances, therefore, I trust that my recommendation will meet with your approval.
(22.) With regard to secondary triangulation, about ten triangles remain to connect the city of Dacca, and I propose to employ Mr. Ryall on this undertaking at the commencement of next field season. The country between the stations of Dacca and Mymensing appears to consist of thick forest jungle throughout its entire length, and it would le a tedious operation to carry a minor triangulation through it. As the Bralmaputra Series will pass within 28 miles of Mymensing, over fair country, I would recommend that that station be connected hercafter therefrom.
(23.) I now have to report on the work executed by each assistant:

Mr. C. J. Neuville, Civil Assistant 4th Grade, was emploved during the early part of the season in completing the clearance of the final rays near the frontier. This occupied him till nearly the end of February, when he had cleared 41 miles of rays and 3 hill tops. He had been much delayed by the heavy forest timber which had to he felled at two of the stations in the hills, but was able to get the rays clear in sufficient time to prevent any delay in the observations. Mr. Ncuville rejoined my camp on 27 th February, when I gave him instructions for carrying a minor series of triangles with a 7 -inch theodolite, to fix the civil station of Noacolly, from the lase Matnbi T. S. Kadra T. S. of the Enst Calcutta Longitudinal Series, the country between these stations being tolerably open, and favorable for breaking up into minor triangles. The direct distance which required to be triangulated was about 15 miles, which I anticipnted Mr. Neuville would have accomplished with ease in two months; but, though employed for nearly two and a-half months on the undertaking, for more than a month of which time he had the assistance of Mr. Harris, I regret to report that he failed entircly in his object, not having taken a single observation.
(24.) Mr. F. W. Ryall, Sub-Assistant 2nd Grade, was transferred from the Madras Coast Series, where he suffered much from ill-health, and posted to this party, as it was thought that the climate of Bengal would be better suited to his constitution. He joined the office on the llth November. The duty I allotted to Mr. Ryall was to carry a minor series of triangles, with one of the new 14 -inch theodolites, from the Last Calcutta Longitudinal Series, up the river Megna, for the main purpose of fixing the city of Dacca. On the arrival of my camp at Raipur, I sent Mr. Ryall to Dacea, to procure suitable and serviceable boats for the conveyance of himself and party, and also that he might have the opportmity of reconnoitering the line of country over which his triangulation would run. He rejoined my camp on the 18th December, and left again with his party on 20th idem, when he commenced his operations. On elosing work on 3rd Junc his out-turn consisted of 18 triangles, covering an area of 238 square miles, in a direct distance of 36 miles. Pillars and platforms were constructed at 10 stations, and 68 miles of rays cleared through heavy jungle. All the permanent Revenue Survey stations and pillars in the vicinity of his triangulation were connected, and vertical observations were taken throughout the Series. This is a very fair and creditable scason's work, considering the difficulties nad delays met with. The navigation of the Megna river during the stormy montlis of April and May is a dangerous and tedious procceding, and much muxiety and delay was erperienced during those months on this nccount alone. The very thick forest jungle which skirts the banks of the river also considerably retarded his progress in the selection of the stations. The following extract is taken from Mr. Ryall's report :-
"After getting over the scrious obstacles presented on my rays, I had other natural difficulties, equally great, to contend against. April and May proved to be very stormy month. Short intervals were only obtained for observations. Sometimes eight and even ten days were passed in utter inactivity, owing to the impracticable condition of the river from storms and rain. After much anxiety and suffering from fever during the greater portions of these months, I succeeded in getting through six stations. I need not enter into particulars descriptive of the daugers attending the navigation of the great Megna river, for, doubtless, your own experience would verify all I could say about it. Frequently days were lost in attconpting to cross, and as it rarely bappened that the calm conditions of the river and the times for my crossing it wore coincident, I naturally lost much time from this circumstance alone. Throughout the course of my experience I never met with greater privations and difficulties."

Mr. Ryall's camp returned to Calcutta on the 15th June.

(25.) Mr. G. A. Harris, Sub-Assistant 3rd Grade, was amployed up to the middle of March in erecting platforms and staircases at the various tower stations, and in making roals for the theodolite up to the three stations situated in the hills. On the 20th of March I sent him to pay the compensation for trees cut down on two rays, which remained to be settled. After accomplishing this, he joined Mr. Neuville on the Jat of April, to assist him in the Noacolly triangulation, which has heen previously reported on. Whatever Mr. Harris undertakes is always done well, but he is slow, and there is great room for improvement in his activity and energy. I propose employing him during the next season in building the towers of the Bralmanputra Series.
(26.) Mr. W. J. O'Sullivan, Sub-Assistant 3rd Grade, acted as observatory recorder throughout the observations done during the season. In addition to the ordinary office work, the duplicate angle books were, for the most part, brought up independently by him in the field. He is neat and very accurate in his recording, and is a good computer, having taken part in all the principal computations lately done. On the completion of the observations of the Fast Calcutta Longitudinal Series, he accompanicd me, to assist in the approximate work of the Hrahmaputra Series, and gave me great satisfaction in everything he did. He is intelligent and energetic, and I cannot speak too highly of his endeavours.

EXTRACT FROM THE NARRATIVE REPORT OF W. C. ROSSENRODE, ESQ., ASSISTANT SURVEYOR, in charge eastern frontien series g. t. survey, no. 28, dated 17 th july 1867.
(3.) In my narrative of last season I mentioned that the bearers wished to leave, and that I had induced sixteen of them to remain. Not to be entirely dependent upon then, I made arrangements for recruits from Oude and Hazaribaug, so that the Azimgurh bearers attached to the Series may not again presume to dictate terms to me. The Hazaribang men were readily oltained; food was scarce, and they were glad to take service. The tindal who was sent for recruits to Oude was not so successful, owing to the imprudence of one of the men on leave. This man had been to Kyouk Phyoo and Akyab, the two penal settlements of former years, and he informed the people of his village that he had been to the much dreaded Kala Pani, or penal settlement; had seen life convicts of all countries, and had personally spoken to a countryman of his who had been transported many years ago. This information sprcad rapilly, and the people of the adjacent villages, hearing that the Survey was being carried on in the vicinity of Kala Pani, refused to enlist, and it was only three days before the men on leave were preparing to rejoin that a few offered to take service, being then convinced that this belicd country could not be so very bad as it had been represented, when their countrymen on leave actually intended returning to the party. These recruits, as well as the men from Hazaribaug, joined me at Thettong H. S. late in November.
(4.) The Chittagong men, who had been trained to direct signals, obtained leave, on faithfully promising to return on the lst November. They would on no account sign an agreement on stamp paper, and were resolved to resign if they were not permitted to visit their homes. I had therefore no other alternative but to give them leave. On reaching Clittagong, they wrote to me that they were willing to return, provided I agreed to give each signalman 15 rupees a month. The treachery of these men not only disappointed, but crippled me greatly, five out of the number being lampmen. Had I possessed magisterial powers, the fear of my exercising them would have deterred them from keeping away. I found myself powerless, knowing that they could not be punished, or compelled to serve in a country where free trade and free labor prevails. It was absolutely necessary to replace these signallers; I therefore lost no time in training the most intelligent and promising men with me, and succecded in substituting the required number, and was able to detach them to occupy the stations in advance a week before I resumed field operations. Sickness in the beginning of the season prostrated a large number, and a couple of lampmen were completely incapacitated from work; one subsequently died, and the other was crippled with rheumatism, and remained under medical treatment almost the whole season.
(5.) I have tried to introduce Chittagong men, as well as Mugs and Burmans, into the estahlishment. The former are intelligent, and answer very well as signalmen, but they set a high valuc on their services. The Mugs and Burmans, after repeated trials, have proved failures. 'They are unwortly of trust, being a lazy, apathetic race, given to opium smoking, toddy drinking, and gambling. They also demand high pay, 12 rupees a month being the rate for a common coolie. Out of thirty Mugs and Burmans only one man has afforded satisfaction; he was employed under the Deputy Commissioner of Kyouk Phyoo, and, on my applying to him for an interpreter, this Burman was selected. A better choice he could not have made. I found the man very useful, intelligent, and reliable. He did good service throughout the season, and I have retained him to instruct the native establishment in the Burmese language.
(6.) During this season boats were used five months ont of the six. The conntry crafts were employed, no others being procurable. These are constructed of single planks varying in thickness from one and a-half to two inches, with cane fastenings; they are buoyant and elastic. The very best of these frail primitive boats were selected, and every precaution was taken for the safety of the instrument. The valuable records and treasure were always placed in my boat,
and accompanied me, and I am indeed very thankful to say the party returned to Akyab, after a very trying season, without a single accident, notwithstanding that immense rivers, formidable bays and estuaries had to be crossed and recrossed in conducting the final operations. An inspection of the chart which accompanies this narrative will shew the expanse of water surrounding some of the principal and secondary stations, and it certainly required nerve, prudenee, foresight, and julgment to visit stations in such frail crafts as are only to be had in this province for use in the formidable tidal streaus above referred to, these streams varying in breadth from one to tweuty miles.
(7.) Water was plentiful, but none to drink, except at particular localitics, or at the sites of villages. The Burmans and Mussulmans carricd their water, and took their meals on board, but in this peculiar country the Hindoos, of which my establishment is chiefly composed, fared very badly. To add to my already overtaxed responsibilities and anxieties, I had to regulate the movements, and select the route for the fleet, in order that so large a number of men, whose very lives depended on my arrangements, should have their meals at stated times. lavorable tides were frequently lost, and circuitous routes were often taken to provide the men with water for food and drink. The springs are few and far between. They are, when found, enclosed with pucka masomry, and no expense is spared to ensure a permanent supply. l was informed that the inlabitauts coutribute their mite in constructing these wells and tanks for the bencfit of travellers.
(8.) Much delay and inconvenience was experienced during the latter portion of the field scason from coolies not being procurable. From the 21 st November, when the party took the field, to the 13 th March, fifteen principal stations were completed, and from 21st Marel to 12th May final observations were taken at only four stations. On comparing the above dates, the delay will be apparent.
(14.) The chain of mountains dividing Arracan from Burmah is crossed by a high roal, over which elcphants can travel comfortably witl three-fourths of their usual loads. This road was made by the Public Works Department, and cost the Government a large sum of money. 1 am told it was completed in 1857. The road is very grod, having mostly a gradient of a foot in seven; in some parts the ascent is greater. I believe this highway was made for wheeled conseyances, to inercase the trade between Arracan and Burmal, as well as to facilitate the movements of troops between the above-named places. The country through which it passes is totally uniuhabitel throughout its whole length and breadth. The encampments were all cleared, marked, and named after each water spring, and travellers and traders are met with in large bodics, fully equipped aud provided, crossing this desert, where wood and water alonc are procurable. The police patrol this road once a weck, to prevent dacoities, which were formerly of frequent occurrence. The road not being metalled, is much cut up, and carts cannot now he used; they may have been employed before, when it was originally opened. Such was the comutry through which the final work was to be carried when the boats were abandoned.
(15.) I proceeded to Ran-Khotong II. S., which lies to the south-east of the town of Tongoop, and then sent on all the clephants, laden with supplies, to Yeobogi encampment, which was centrically situated with refercoce to my forward stations. At this place a large depôt was established, with a guard to protect it. This depôt auswered admirably, aud the supplies sufficed until the last sigual party left this inhospitable region.
(16.) After completing the observations at Ran-Khotong H. S., I purposed visiting Koguentonggri, hcaring that the ascent mas easy, and that the elcphants could convey the baggage to the summit; but, on subsequently learning that Tongoh H.S. was situated in the wildest part of this wild country, six stages removed from the ncarest village, and that the ascent was so great and continuous that it was impossible for clephants to ascend it, and, lastly, that water was ten miles from the station, whereas Koguentonggri could be supplied with provisions from two stages, in case the depot failed, I altered my plans, and proceeded first to Tongoh, the station which offered greater difficulties, and I am glad I did so. After the 4th March, in the direction of 'Tongoh, I found the road which had been prepared for the great theodolite was not adapted
for elephants, the ascent beimg too great. Scouts were sent out, and a hill was found offering all the facilities for a good road for crossing over the intermediate ranges.
(17.) The new road was completed, and made to join on to the old, passing over the ridge, and we procecied on our journey, crossed the ranges, and encamped at the foot of Tongoh, on the stream, which derives its name from the liall from whene the aseent to the station commenced. I here met one of the assistants of the lampman in charge of Tongol H. S., and he informed me that there was no water nearer the station than where we stood, and that a supply was daily taken from this stream to the signalman.
(18.) We ascended the hill next day, and reached its summit in the afternoon. On my arrival I found the sigualman was prostrated with fever. I learncd from lim that the ray to Kognentonggri was completely closed by the immense forest trees left standing ou the hill itself. Two days were taken up in remoring all the obstructions on this ray. The water was ten miles distant, and the men, with the duffadar in charge of the signal party, made one trip daily, by supplying lim with water, and returning to the stream, sleeping there, and ascending the hill the uext day with water, and retuming again to the stream, thus travelling twenty miles daily. Scarch was made for water, and it was found at a distance of two miles from the station. The formidable difficulties which were represented to me were in a great measure overcome, and the delay that would have inevitably occurred, from the ray being obstructed, was removed by my visiting this station, instead of going on to Koguentonggri.
(19.) I have to bring to your notice the praiseworthy conduct of Ahmed Ali, duffadar in charge of this station. His assistants were ill, he sent them down to remain at the stream, one man was to bring him water, and return to his companions below. He continued at his post aloue, on the platform night and day attending to the signals, be being ill with fever. I have presented him with 5 rupees as a reward for not deserting his post, isolated as he was in a wilderness abounding with wild animals, elephants being the most numerous. I beg to recommend him for promotion to 12 rupees a month.
(20.) The difficulties, privations, and dangers on this Series have been so often reprenented to you that I will not reiterate them, but I earnestly trust you will be pleased to sanction an increase of a rupee to each member of the native establishment. I am compelled to urge this measure from the very great difficulty of obtaining recruits, owing to the wages of all menial servants being so very high in British Burmah. Coolies cannot be procured for less than 8 annas each per diem, and even at this high rate the supply is very limited. No Burman will serve for less than 12 rupees a month as a carrier in the establishment. 10 rupees is the lowest pay given to servants. Carriers who have been discharged as useless from my establishment have readily obtained employment in Akyab as punkah-coolies, durwans, and chowkidars at 10 rupees a month. Since assuming charge of this Scries I have used my very best eudeavours to curtail the exponditure ; the exigencies of the service alone demand the general increase I have recommended.
(21.) The men of the native estahlishment are from Hazaribaug, Azingurh, and Oude; they have worked cheerfully and well throughout the season. Whenever necessary, they have put down the instrument, and readily handled the spade, hatchet, or pickaxe, and comnenced work. They were subjected to greater hardships this season, owing to labor not being procurable.
(27.) One serious occurrence took place at Khnungdong H. S. The signalmen were attacked by dacoits, and two of them were scriously wounded on the head and body with dows (small swords), and robbed of all the money they had with them. On my return from Thamadong I saw these poor men with gashes in depth half and one inch respectively, and three and five inches respectively in length. The inflammation was so great that their heads appeared immensely large. I reported the circumstance to the Deputy Commissioner of Sandoway, as it occurred in his district. I have not yot learned whether the perpectrators of this dacoity lave been appreliended. 'these men were in hospital for two montlis. One of these, Jurawan Bhooj, is a fine old man, who commenced life under Sir George Everest in the Great Are, and has acrved, without a break, for thirty-seven ycars.
(30.) Notwithstanding the difficulty in obtaining labor, the delay in assembling coolies in an uninhabited tract, and collecting provisions and building materials, Mr. Beverley succeeded in selecting thirteen stations during the scason, and extending the approximate triangulation ninety-two miles direct distance. Had his arm not been injured, his energy and zeal, for which he is conspicuous, would have enabled him to have added to his well-earned labors five or six stations more. His selections in the uninkabited portion between Tongoop and Prome were most judicious; by fixing them as he did, he crossed the desert by the fewest number possible. Mr. Beverley is a most deserving and useful assistant, both in the field aud quarters, and I aut very much obliged to you for promoting him.
(31.) Mr. Price, Sub-Assistant 3rd Grade, was left at Akyab on the 21 st November to construct the tidal-mark station. He has this season built sixteen rectangular piles, three sccoudary masonry pillars. Of secondary work observed with a 12 -inch theodolite at Agandu tidal-mark, Chirigea and Boronga stations, on twelve zeros at each of the above. Cleared rars from Boronga to Chirigea, Maopratong, Painasa and Kuainchum stations. He was delayed a mouth and a-half at Boronga owing to his illness, the illness of his establishment, and from the signals not being sinultancously seen. Mr. Price was ill off and on from December 1866 to March 1867 from bronchitis and fever, and he suffered from the latter again on his return to quarters. His boat twice grazed over rocks, and was nearly dashed against them at other times. He was in great peril of drifting out to sea on three difierent occasions. He had bad crews, one and all being opium smokers. He could not replace them, owing to the difficulty of obtaining men during the rice season, the trade being then brisk, and the wages earned very ligh, in consequence of the great demand for labor. Mr. Frice is very energetic and persevering, and, had his health been good, he would have accomplished the quantity of work I marked out for him.
(32.) Mr. Alfred Moore, Sub-Assistant 4th Grade, was employed in recording the observations during the whole scason, and assisting generally in all other duties. He has aftorded me very great satisfaction during the time he bas been in the Department. His checriulness, the alacrity with which he performs his duties, his intelligence, and aptitude in acquiring professional knowledge, makes him an acquisition to this Series, the more especially as he is hardy and enduring. He has this season walked with me every inch of each successive stage over the roughest ground ever traversed, with blistered and sore feet, without complaining, and notwithstanding the fatigue and painful state of his limbs, he has readily joined me in the observatory, leveled, and plummed the stand of the instrument himself, and took up his position as recorder, while I put up the instrument and adjusted it. In the boats no office work could be attended to, in fact, to write was impossible, he had therefore to bring up all arrears on reaching the next station, in addition to lis duties in the observatory. When work was to be done, he did it with a will, and if he saw me handle a hatchet he took up another, and felled trees, or led on a party of the road-makers; such an example cannot but instil zeal, confidence, and derotion on the part oi the native establishment towards their oflicers.

extract from the narrative report of g. shelverton, ebq., agsistant burveyor, in charge jobbolpore meridional series, contained in letters no. 6, dated 3rd august, and no. 9, dated 23hd augost 1867.

(1.) Mr. Hickie was employed in extending the approximate series from the parallel of 20° to the junction with the Madras Meridional Series, in latitude $16^{\circ} 25^{\prime}$. Mr. Hickie had, during the previous field scason, reconnoitered the country between the parallels of 19° and 20°, and was thus able, soon after reaching his ground, to select finally the stations of the Ankorá and Burgpaili polygons. He then suffered from a severe attack of malarious fever, which compelled him to seek medical aid at the civil station of Seroncha. After his recovery he selected the Kotaj-púr-Bolíkonda double polygon, two quadrilaterals and a heptagon, closing on Maniám H. S. to Dhulipálá station, the northernmost side of the Madras Meridional Series. Mr. Hickie also built platforms, cut roads, and cleared jungle at ten principal stations. His progress was very satisfactory. By incorporating stations of former surveys, he extended the approximate series a direct distance of 245 miles.
(2.) Mr. Bell was at first employed in building six platforms of the Aukorá polygon. He was then ordered to join Mr. Hickie, whose state of health at the time was causing me serious anxiety. Mr. Bell, on his way to Mr. Lickie's carnp, was also obliged to visit Seroucha for medical advice. He subsequently built a platform at Iuaparati H.S., and shifted a station previously selected to a hill about three miles to the south-east of it, reporting that the old point was not practicable for the 36 -inch theodolite, except at a great expenditure of time and money. After Mr. Bell's return to Jubbulpore, I sent him to complete the observatory at Karaondi H.S.
(3.) Mr. L. J. Pocock assisted me in the observatory. He suffered occasionally from fever, but was always at his post. Just before closing the principal observations I detached him to determine the height above the sea level of the civil station of Seroncha, which he did well enough. He was then sent to build an observatory at Karaondí H. S., but his progress was so slow and unsatisfactory that, though he had nearly completed the building, I was compelled, after he had been engaged for about two months on the work, to recall him, as I apprelended that he would take a loug time over the little that remained to be done.
(4.) Mr. E. E. Wrixon was, on account of the unhealthy nature of the country, retained in my camp, to assist in the observatory, in case of Mr. Pocock's illness. Mr. Wrixon suffered in health a great deal. He recorded my angles at two stations, and was also employed in current business, and in making duplicates of my angle books. He has learned the simpler computations, and has made himself generally useful.
(5.) No secondary work was attempted, as the country had been extensively triangulated by the party of the Hydrabad Topographical Survey. Checks for this minor triangulation are afforded by the sides of the triangle Sonda H.S., Aukorá H.S., Raotá H.S., and the side Aukorá H.S., to Jhillerá H. S., which are common to both surveys. The heights above sea level are also teated at these stations.
(6.) Obscrvations for latitude at Karaondí H.S. could not be taken before the setting in of the rains, as the observatory was not ready in time. These observations will be commenced as noon as the weather permits.
(6.) The principal triangulation of field season 1866-67 embraced an area of 5,546 square miles, covering more than half of the Chándá district, some part of the Abirí jaghir and Tálúké Seroncha, and nearly the whole of the Chinúr pargana in Hydrabad. The country through which the party worked is notoriously the most unhealthy portion of the valley of the river Wein Gunga. Cholera and typhus fever, after committing great havoc in the villages, had happily
disappeared for a time, leaving thicir traces bowever in the beds of evcry stream, where their victims had been hastily interred in the sand, and covered over with brambles, cremation having apparently been abandoned as the mortality increased. At the village Pinchkalpet my encamping ground was strewed with charred human bones. All of us experienced a great seuse of relief when we marched away from this locality.
(7.) A good many suffered in camp from fever and dysentery, but I am glad to say that there were no deaths. The signal-men were never in good health, owing, I believe, to their sedentary occupation, and to want of change, as they seldom quit one post for another in less than three weeks. With temperate men of their class attacks of fever rarely last long, or terminate fatally, if timely remedial measures are adopted, and this is of great importance as they are so speedily prostrated, but I have not yet succeeded in persuading them to take the most ordinary precautions, though they are supplied with good medicines, which they lave been taught to use. In my own camp medical aid was at once afforded under my superintendence, and constant change of place helped convalescents to regain strength rapidly.
(8.) Viewed from a sanitary point, the great annual conflagrations of forest undergrowth must do the country an immense amount of good; these fires, however, are supposed to be very destructive to young timber, and attempts have been made to check them, but, fortunately, they spring up without human agency, and are perfectly uncontrollable.
(9.) The forests of Ahírí (leased I was told to a European contractor) contain most valuable timher, teak, in particular, grows abundantly, and attains a great size. Logs can be foated down the Wein Gunga and Godavery rivers to the coast. In the Chándá district the hills and valleys are also thickly wooded, but the timber is not so good. During the rains, when the rivers are swollen, a small steamer plies between Chándá and Masúlipatam.
(10.) The Sirkonda hill, where I have a station of observation, has sometimes been occupied as a sanatarium by invalids from Seroncha. The path up is very good. There are ruins of bungalows on the hill top. Seroncha lies about twelve miles to the south-west of the hill near the junction of the rivers Godavery and Wein Gunga.
(11.) Near my station of Rámgír in the jághír of "Fakirán Múlk," a son-in-lav of the Nawab Salar Jung of Hydrabad, there is a formidable fort, situated on a precipitously scarped sumdstone range. It is approached from the east by a broad zigzag path, very strongly paved, and in some places literally hewn out of the hill side, being commanded through its entire length by strong natural defences, inacessible to an attacking party, but from which a most murderous fire could be kept up with little risk to the defenders. The wall, which is of astounding thickness and great height, with bastions judicionsly disposed, forms on the hill top an enclosure of about three or four miles in circumference; this is divided into six strongholds, which comnunicate with cach other by massive gaterrays, and are themselves perfect little forts. The walls are facel with hewn stones of immense size, quarried from the hill; some of the blocks used are weven feet in length, six inches in width, and four feet in depth; the space between the two faccs being filled up with rubble. Though the tanks have been very much neglected, there is no scarcity of water, but, with proper arrangements, these reservoirs, all of which are within the fort, could be made to hold an inexhaustible supply for a large garrison. Therc are said to be sisty guss in position; I, however, saw very few. One that I measured was twelve feet long, with a bore of nine incles; they are made of longitudinal strips of iron four inches wide welded together, and coils shrunk on them. Since the occupation of the country by the Mahomedans, the top of the wall has been disfigured with little minarets and cupolas, a summer-house built, and some additions made, which look quite contemptible alongside of the mighty conceptions ly which they are surrounded. The tombs on the bill top would indicate that at no distant time the place was occupied in great force by the Mahomedans, but there is nothing now to shew that it is considered of any importance. On the walls there are well-exccuted bas-reliefs of antediluvial animals; a double-headed cagle grasping monsters in its talons is conspicuous over every gateway. There is an Arabic inscription over the principal cntrance, but I was not able to understand it. With the exception of onc breach, the outer wall is in excellent preservatiou.
(12.) During my short stay of two days I could not get any reliable information about the origin of such a remarkable place, but, on my return to Rámgir, I hope to collect material for a more interesting report, and to send you a sketch of the fort on a large scale. Tradition says that it was luilt by Pratab Rúdra, who received supernatural help, that his laborers were daily paid with stones, which were soon converted into bread, but the original story, doubtless, was that the workpeople starved.
(14.) The great hardship of the season was our being obliged to employ pack buffaloes for our baggage. These animals were thoroughly knocked up as soon as the weather became warm. For half the time that we were in camp a proper meal could not be served up before four o'clock in the evening, and sometimes we had to wait for it till ten o'clock at night. Messrs. Pocock and Wrixon, whose arrangements were not so good as mine, frequently passed the night under trees. The direct distance gone over, while the work was in progress, is shown by the sides of the triangles to be 505 miles, but, as we were compelled to adopt most circuitous routes, I think that about 1,000 miles of road must have been travelled.
extract from the narratite report of h. feelan, eso., strveyor 3rd orade, in chatge gambalpore meridional selies, no. $\frac{70}{382}$ dated 15 th augost 1867.
(2.) The party proceeded by rail to Chunar, from whence it marched on the 19th November, and arrived at Kasiatu H. S. on the l0th December, and, in accordance with instructions conveyed in letter No. $\frac{7}{614}$, dated 22nd October last, continued the revision of the Calcutta Longitudinal Series eastward. The approxinate series was entrusted to Mr. 1st Grade Sub-Assistant Keelan, who was directed to form the single series of triangles into a double one. Mr. SubAssistant Trotter was detached at the same time to construct roads and platforms, and Mr. Sub-Assistant Peychers had the preparation of materials, and the building of the rectangular pillars. Mr. Sub-Assistant Connor's services werc retained in the office and the observatory.
(9.) With the exception of the towers at the extremities of the base-line, and Satten and Clinsurah stations of the Calcutta Meridional Series, all the old towers have been inspected. The old tchegraph towers introduced into the triangulation on the south flank, and noted in the margin*, are reported to be as good as when origiually built, except that the whole of the wood-work in them has de-
 cayed, and will require to be renewed. Of the old tower stations on the north flank, noted in the margin \dagger, Akistapúr and Aknapúr are reported to have tumbled down entirely. A column of brick masonry, about seven feet at base, and upwards of fifty feet high, marks the station of Mad-
\uparrow Balki T. S., 35 feet bigh. Madpúr column 58, do. Akistapúr, da AEnapúr, do. púr, used appareatly by means of a scaffolding. Balki tower appears to be in such a dilapidated state, that it is proposed to build an isolating pillar within, leaving the angular walls standing for the support of the stage for the observers, and Bholá is a pucka hollow tower. From the foregoing description of Balki, Madpúr and Bholá it would appear that there are no two towers alike, but built up haphazard. Madpúr tower will have to be re-constructed, as also new towers built at Akistapúr and Aknapúr.
(10.) The districts in which the approximate series party was employed, after leaving the hilly ground, were Bancoorah and Bheerbhoom, both under the jurisdiction of the Com-
\ddagger Extract hereto appended. missioner of Burdwan, to whom a communication \ddagger was forwarded early in February, applying for assistance. As the operations will now approach the neighbourhood of Calcutta, the expenses will be enhanced, and great anxiety will be felt in carrying the work through, as the inhabitants of Bengal, particularly in the vicinity of the metropolis, are proverbially the most litigious people in all India ; it is hoped, however, by tact and careful management, that disturbances and disagreements with owners of trees, with whom the members of the party will be brought into contact, will be avoided. I might also add that the expenditure attending the construction of towers will be greater than under ordinary circumstances, as the prices of every description of building materials are exceedingly high, and laborers cannot readily be procured, without the interposition of the services of a class of men called "coolie contractors." In fact, the principles of free trade are carried out in Bengal to the fullest extent, and buyers must pay the prices demanded, or subject themselves to being summoned before the local courts.
(13.) In closing this report, I beg, in justice to him, to bring to your special notice the nervices of Mr. Keelan, junior, who has conducted the duties of the approximate series so ably and successfully during the past three seasons in a comparatively difficult country; as also of Mr. Peychers, hoth of whom I consider qualified, by their work and abilities, for promotion, if the rules of the Department will admit of their advancement.
(14.) I have likewise to express my satisfaction with Messrs. Trotter and Connor; the former acquitted himself well in tower building, which neccssitated his keeping the field to a late period, and the latter rendered me efficient assistance in the observatory, and in the current duties devolving on a junior hand.
extract from the narrative refort of lieutenant w. m. Campbell, r.e., assistant surveior, in cearge madras party g. t. survey, dated 5th july 1867.
(1.) I assumed charge of the Madras Longitudinal Series from Captain Branfill on the

Mr. A. W. Donnelly, Ciril 2nd Assisfant.
" F. W. Ryall, 1st Class Sub-Assistant.
" J. W. Mitchell, 2nd Clase Sub-Assistnnt.
" J. R. O'Neill, 2nd Class Sub-Assistant.
" O. V. Norrie, 3rd Class Sub-Assistont. 28th May 1866, on which day he left Madras, on leave to Europe on sick certificate. At that time the party consisted of one Civil Assistant and four Sub-Assistants, as per margin. Of the latter, Mr. O'Neill had been called upon by you to send in his resignation some months previously, but was permitted to continue in his situation till the close of the field season (1865-66), when he was to quit the Department.
(2.) It was originally pour intention that this party should only carry the Longitudinal Series up to the meridian of Bangalore, when it should take up the revision of the section of the Great Arc between Bangalore and Cape Comorin. Owing, however, to some misunderstanding, Captain Branfill believed that the party was intended to work westward to the coast, and, accordingly, at the close of the field season he had one polygon, as already mentioned, prepared for observation to the west, but no preparations had been made to the south. On my representation of this state of affairs, you sanctioned my completing the polygon to the west before commencing operations to the south, thus giving time for approximate operations in the latter direction. You also directed me to revise a portion of the work of season 1865-66, and to make arr.ingements for the remeasurement, in season 1867-68, of the old base-line, measured by Colosel Lambton in 1800 or 1804, in the neighbourhood of Bangalore.
(3.) In the middle of November Messrs. Donnelly and Mitchell took the field, the former to make required arrangements for the base-line, and the latter to carry on the approximate series to the south.
(4.) Alterations, which you had authorized in the 24-inch theodolite, required my pass* ing a considerable time in Madras, and I did not finally take the field until 2nd January 1867, when Messrs. Norris and Potter accompanied me as recorders and general assistants. I detached Mr. Norris on lst March to close the stations at which I had completed observations. Mr. Potter remained with me until the close of the field season, on 18th May, when the party returned to Bangalore for recess.
(5.) Having now given a brief outline of the years' work, I shall proceed to enter into detail, under the heads of "Recess Work," "Field Season," and "Personal Reports on Assistants."

The Recess Work.

(6.) The party had been very short-handed during the recess season of 1865 , owing to which Captain Branfill handed over to me considerable arrears of computations, including one set of star observations for azimuth of season 1864-65, and secondary work of seasons 1863-64 and 1864-65. Moreover, a large quantity of the duplicate angle books of season 1865-66 had to be written up, and nearly all recomputation and comparison remained to be done. Thus the work to be done during the recess was very much heavier than usual, and it was finished with some difficulty.

The Field Season.

(8.) The principal obserrations were commenced on 2nd January at Halsurbetta, and were continued without intermission until the $10 t h$ May, when the season was closed at Bodamalle H.S. The details are given in tables appended.
(13.) The Great Arc Serice passes almost immediately into a difficult country, hilly and
jumgly tracts being numerous, and cart roads few. Proceeding southwards, the difficulty of the coumtry increases, and all cart roads disappear as the edge of the Mysore plateau is gained. A wide belt of hill country, or the ghatts, separates the high land from the plains, and throughont this district carts are unknown, while the roads are often tracts barely practicable for laden bullocks. Large villages are rare, and labor and provisions difficult to procure. In some parts the jungles abound with wild elcphauts and other game, and the natives dread passing through them except in parties.
(14.) Having applied for the loan of Commissariat elephants, which was refused, I was obliged to adapt the impedimenta of my camp to suit the means of carriage (bullocks and coolics) arailable. To this end I discarded the office and other heavy tents, takiug ouly oue small double-fly tent for office use, and shuldaries.
(15.) Most of the stations of the first figure of the Series, the Dewarabetta hexagon, are on the high ground, in comparatively open country, but the whole of the aest, or the Poná-si-betta hexagon, is situated in the wild hilly country. Through the middle of this latter polygon the river Cauveri runs, three stations lying on the right, and four on the left bank. These stations are gencrally on high hills, and the valleys between them being deep, the time occupied in marching was excessive. I may instance one case, in which a march of about nineteen miles in direct distance occupied eight days.
(16.) In addition to the difficult nature of the ground, the progress of the work was considerably retarded by clouds by day and fogs by night, with oceasional rain, and the first of May found me in the middle of observations at the last station but one of the figure, after which rain fell nearly every day, the sky was almost constantly clouded, and storms were frequent. Under these circumstances I considered myself fortunate in finishing the figure (including the four angles of continuation of the next polygon) on l0th May, when I closed work for the season, marched to Salem, and despatched the main portion of the party by rail to Bangalore, where they arrived on 19th.
(17.) It was with great reluctance that I felt myself obliged to return to quarters when I did, as I had been particularly anxious to complete another figure. One great object was, that I might be able to take a set of star observations for azimuth, of which I have now none to show for the seasou. An azimuth must be observed in the neighbourhood of Bangalore, but as one end of the proposed base-line will afford the most desirable station, I postponed the observations until the base-line should have been chosen, and the stations built, kecping in view your expressed wish that azimuths should only be observed at stations suitable also for the observations of latitude. My observing one in the country through which I passed was quite out of the question, the nature of the ground giving promise of local attraction chough to vitiate the result of auy such observations. The two southern stations of the third hexagon, however, are situated in plain country, and both well adapted for azimuth and latitude observations, hence I had looked forward throughout the season to closing at one of these stations with the observation of an azimuth.
(18.) I can only hope that this, my first scason's triangulation, may meet with your approbation both in quantity and quality. With regard to the latter, I thiuk it may have been slightly impaired by certain defects in the instrument, into which I shall presently enter at length. It is satisfactory to me to note the very apparent progressive improvement in the quality of my work, as indicated by the weights of the angles and the triangular errors.
(19.) All duplicate angle books were completed in the field, including recomputation and comparison, being geuerally kept up to date. I also computed onc complete set of weights of angles.
(20.) 1 regret that I have very little secondary work to show. The country generally presented few points worth observing, and throughout the season I was so short-handed that I could but ill-spare signallers for secondary work. I took oliwervations (horizontal and vertical angles) from the top of St. Andrew's Church in Bangalore, with an 8 -inch theodolite. I
also had a heliotroper for matuy days on the highest peak of the Neilgherri hills, hoping to obtain a sigual for obscrvation at two or more of my stations, about seventy miles distant. In this however, I failed, the weather never being clear cuough to afford much chance of working with such long rays. I also established a secondary station on the Shevaroy hills, which lic within easy observing distance of some of the Great Are stations. To this point I obtained both horizontal and vertical angles at one station, Gardi-konda, but as I did not reach any other suitable station for observations, it remains uufixed.
(21.) If I had succecded in these observations, I intended visiting both the Shevaroys and Neilgherries with the l4-inch theodolite, for the purpose of observing the third angles of the triangles and the back vertical angles. I had further hoped to be able to fix a second point on each range within a few miles of the first, in order to aftord convenient bases for small surveys of the hills, if such should at any time be desired. I do not anticipate any difficulty in both these projects being carried out during the observations of the next polygon of the Great Are.
(22.) My field season commenced very late, or not till 2nd January, but the season was such that but very little work could have been done earlier, the north-east monsoon having been unusually late and heavy. Leen in January I was considerably troubled by fogs and clouds in the plains, and by rain on the hills. Throughout the scason clouds were prevalent, and fogs alnost invariably closed over the hills during the night and early morning.
(23.) Before entering the glaáts I made careful inquiries as to the healthy seasons, and the reports I received were most discouraging ; one gentleman going so far as to write on 26 th March, in answer to a letter in which I had named the stations I proposed visiting,-" For the next three months the country you wish to visit is siniply deadly from fever." Notwithstanding these reports, I have never had my camp so free from fever as during the past season, although I observed at nearly all the stations referred to above. I should have had some hesitation in doing this, after so strong a waruing, but fortunately my receipt of the letter containing it was delayed until my signallers had been in the country alluded to for some weeks without ill effects.
(24.) The difficulty of obtaining reliable information on such subjects is very great, and no rule can be invariably applied to all jungles. The only one I know which very generally obtains is, that all jungle is dangerous while drying after the cessation of rain. As an instance of the uncertainty of general rules, I may point to the fact that the jungles of northern India, the T'erai and Dehra Doon, are considered deadly during rain, whereas in many of the jungles of the south, the healthiest season is that of the heaviest rain.
(25.) In some parts of the country, where bamboo jungles were extensive, I found the seed of that plant much used ly the inhabitants as food. I tricd chupatties made of the seed flour, and considered them excellent.

Personal Reports.

Mr. A. W. Donnelly, Civil Assistant 4th Grade (formerly "Civil 2nd Assistant").

(44.) I have already stated that Mr. Donnelly remained in the field (season 1865-66) till 18th June, completing the stations of one polygon in advance of the principal work. During the recess season he was a good deal troubled by fever. He took the field again on 13th November, to make the first arrangements for the proposed base-line measurement.
(4.5.) You originally attached some importance to the remeasurement of the identical line measwed liy Colonel Lambton, the end-marks of which still exist, and, at your desire, I made a recommassauce of that line in October. I found the obstacles to remeasurement very serious, as the line passes through extensive tanks, and crosses the railway, where the latter is on an embankment of about fifteen feet; and, on my rejort to this effect, you decided to abandon the old line, and directed me to choose a site for a new line, and to arrange for the connection of the old line therewith, by direct triangulation, if practicable.
(46.) As the railway cut the old base-line near the north end, I had hopes that, by stopping short of it, and prolonging the line beyond the south end, the required length for a nem line might be obtained coincident through two-thirds of its estent with the old; while, by making the old south end one of the section stations of the new line, and extending the minor triangulation to the old north eud, I should obtain the length of the old line in the most direct way possible, failing actual re-measurement. I accordingly gave Mr. Donnelly instructions to arrange this, if possible. His search, however, proved that this plan could not be satisfactorily carried out, and I directed him to abandon the old line altogether, and look for a new site.
(47.) I was obliged to interrupt Mr. Donnelly in this work, and send him to open a road for the 24 -inch theodolite to the station of Sávandrúg, on the summit of a high hill of difficult approach, a piece of work which proved long and troublesome.
(48.) Mr. Donnelly resumed his base-line work towards the end of February, and, after two or three trial lines, he fixed upon one, the particulars of which have been submitted to yon, mecting with your approval. This line, though not without objections, the ground being more undulating than desirable, will, I hope, prove satisfactory. It lies close to Bangalore in open country, and admits of simple and intimate connection with both the Longitudinal and Meridional (Great Arc) Series.
(49.) I regret that I cannot report on Mr. Donnelly so favorably as I could wish. His style of working shows carelessuess, not creditable to an officer of his standing in the Department.

Mr. F. W. Ryall, Sub-Assistant 2nd Grade.

(50.) Mr. Ryall was transferred on account of his health to the East Calcutta Longitudinal Series, and left Bangalore for Calcutta, as already mentioned, on 5 th November. While he was with me, during the recess, he gave me satisfaction.

Mr. J. W. Mitcrell, Sub-Assistant 3rd Grade (formerly 2nd Class Sub-Assistant).
(51.) As mentioned in para. 7, Mr. Mitchell rejoined head-quarters on 8th August, after an absence of nearly two years, on secondary work, in the neighbourhood of Masulipatam, of which 1 shall here give some details.

The work consisted of a series of triangles emanating from the side Anantawáram-Bezwáda of the Coast Series, running south-east for some distance to the neighbourhood of Repalli, a place of some importance on the right bank of the river Kistna. Here a check series from the side Bobapilli-Pálapáru of the Madras Meridional Series meets the first, and the two are continued in a double series eastward till close to the coast, when single triangles are thrown out to fix the point Divi lighthousc, and screral prominent points in Masulipatam.

The country being generally a flat plain, much overgrown with jungle, composed chiefly of prickly pear, necessitated the use of short rays and much clearing, and no less than fortyfour triangles were used.
(52.) The work had been begun by Mr. Clarkson (late a Civil Assistant of this Department), in season 1863-64, at the origin Anantawárarn-Bezwáda, wherc he observed six triangles. The greater portion of the rays were also cleared, and station pillars built during the same acason, by Messrs. Ryall and Mitchell. Mr. Mitchell took up the work towards the end of January 1865. During the interval the terrible cyclone of Novemher 1864 had inundated the whole country, destroying many of the stations prepared. Mr. Mitchell thus found a grent deal of work necessary in again preparing stations and rc-clearing rays, which in many cases le found partially closed. He worked nearly continuously till 15th August, when, at Captain Branfill's order, he went into recess quarters at Masulipatam.
(53.) During this time Mr. Mitchell appears to have persevered ngainst many diffienlties, the atmosphere, which, in a flat country, is very seldom favorable for observations, was rendered much more dense than usual by an impalpable nand, which having been deposited by
the imundation, was raised in clouds by the wind after the water had dried up. From this cause lis repetitions in observing are, in some cases, very numerous. He remained in the field long after the south-west monsoon had set in, and, in fact, till the country bad become an impracticable marsh.
(54.) Mr. Mitchell again took the field on 25th October, and again met with considerable delay in clearing rays from the growth of last monsoon, and repairing delapidated pillars. He completed the work on 17th July, and proceeded at once to join me at Bangalore, arriving on 8th August.
(55.) On 14th November 1866 I gave Mr. Mitchell charge of the approximate series on the Great Arc, work quite new to lim, but notwithstanding this, and the difficult nature of the country to be traversed (which I have already described in paras. 13, 15), increased by a good deal of wet weather, he arrived at Salem, having definitively chosen two hexagons, on 4th January 186\%. After a few days rest at Salem, of which he and his party stood much in need, he returned by my orders to Bangalore by rail, and commenced the work of building platforms, \&e., on the chosen stations, a work which he carried on rapidly and economically, completing it early in Λ pril, after which he selected and built the stations of another hexagon before returning to quarter's on 18th May. He also throughout the season kept up his correspondence with ne with praiseworthy regularity.
(56.) I consider Mr. Mitchell has done excellent work during the past scason, and it gives me great pleasure to recommend him strongly for promotion.

Mr. O. V. Norris, B.C.E., Sub-Assistant 4th Grade.

(58.) Mr. Norris joined the Department on 25th April 1866. He was a student of the Madras University and Engincering College, and graduated as a Bachelor of Civil Engineering of the former in 1865 . He was regular and diligent in office during the recess, with the exception of about one month's leave for sickness.
(59.) I kept Mr. Norris with me till the end of February, in order that he might become acquainted with the duties of recorder. I then detached him to close the stations of the Sávandrúg polygon, at which I had completed observations, and gave him a 7 -inch theodolite, with instructions to do some secondary work. He returned to quarters on 18th June, after completing his work, by closing six stations.
(60.) Mr. Norris has not worked very judiciously, losing much time in endeavouring to obtain observations in very unfavorable weather, thereby delaying the work of closing the stations, the importance of which over secondary observations I had impressed on him ; I believe, however, he has worked hard, and he has been most regular in his correspondence with me.

Mr. C. D. Pottri, Sub-Assistant 4th Grade.

(61.) Mr. Potter was also a pupil in the Madras University and Engineering College, and entered the Department with a strong recommendation from Captain Edgcome, R.E., the Principal of the latter, joining on 29th October. Mr. Potter bas been with me as recorder and assistant throughout the field season (excepting a few days' sickuess in January), and has steadily improved in efficiency. He is now a good recorder, and appears to take an interest in his work. Mr. Potter regularly kept up the duplicate angle books, and greatly improved his style.
extract from the narrative report of liedtenant h. trotier, r.e., assistant surveyor, in charge bombay party a. t. survey, no. $\frac{18}{\mathrm{~s}}$, dated 29 th adaust 1867.
(1.) On the departure of Captain Nasmyth to Europe, and the consequent transfer of Captain Haig from the charge of the Bombay to that of the Kattiawar Party, I was ordered down at the end of September 1866, from Department head-quarters at Deyrah Doon, to take charge of the former party. Proceeding by Lahore, Karrachee and Bombay, I reached Poona on the 25th October, and took over charge on 1st November from Captain Haig, then officiating in charge of both parties.
(2.) The first thing to be done on arrival was to arrange the programme of the season's work. Captain Haig in the previous season had carried the principal triangulation of the Mangalore Series (meridian 75°) through the open country nbout Sattara, Belgaum, and Dharwar, down to the outskirts of the dense and unhealthy jungles of North Canara. From a flank side of his last figure he commenced a single branch series westwards to Goa, to mect the South Konkan Series which, partly single, partly double, runs down the west coast from Bombay (latitude 19° N.) to Goa (latitude $15 \frac{1}{2}^{\circ}$ N.), a distance of about 240 miles. He had nearly completed this, when he received a summons to proceed immediately to Bombay, to relieve Captain Nasmyth, who had been ordered away on sick leave. There then remained three stations on the west end of this branch series which it was necessary for me to visit, in order to complete the connection with the Konkan Series. The western gháts lay between these stations and the south end of the Main Series, a distance of only eighty miles in a direct line, but, in reality, a tedious and diffcult journey, owing to the want of roads and means of transport. The jungles of North Canara, in which I had to take up the principal triangulation, have of late years borne such a deadly character, that it was of the utmost importance to obtain accurate information as to the best season of the year for working therein. The result of my enquiries showed that the earlicst time I could work in those jungles, with a reasonable chance of not having my party paralysed from fever, was the beginning of February; this conclusion was confirmed by the fact that, in the previous year, Mr. Sub-Assistant Christie, in charge of a building party, under Captain Haig, was attacked by fever in the middle of January at one of the first stations I had to visit. He, and all the men under him, were obliged to go in to Dharwar, and although they afterwards remained in the field, the progress of the work was much retarded during the remainder of the season, owing to the constant recurrence of attacks of fever. To ensure my reaching this district at the time above mentioned, as a limit, I determined to leave Bombay carly in January, so that I might complete the required observations in the Goanese territory, and then get across the gháts in good time for commencing observations on the Main Scries. I had thus to find employment for myself and assistants for the latter part of November and for December. This was soon found, as Major Francis, the Revenue Commissioner North Division Bombay Presideucy, was very anxious to get some of his revenue boundary-marks laid down carcfully by trigonometrical observations, as a test of the accuracy of the work of his own assistants, aud for the purpose of having accurate data for the construction of his own maps; and also, as an experiment for ascertaining in what manuer the Trigonometrical and Revenue Surveys could best combine their operations.
(3.) I accordingly proceeded on 18th November with my whole party, of strength as per margin*, to the Indarpoor talooka of the Poona

- Mr. G. A. Anding, Sub- Asnidant 2nd Grade. "A. Christie, Sub-Assistant 3rd Grsile. , Jas. Bond, Sub-Aabistant 4th Grade. Wittobe Bappojer, Nalive Doctor. district, for the purpose of making arrangements and starting the work, which I proposed leaving in charge of Mr. Anding. Mr. Christie was to assist the Iatter until the season should admit of his going south to build stations
in advance of my own work, and Mr. Bond, who had only joined the Department a few days previously, was taken, to enable him to learn something about his work.
(4.) We reached Indarpoor, the village from which the talooka is named, in ten marches, the whole office having been employed on the road, and afterwards in the district, when not otherwise engaged, in sorting and arranging the records of the Bombay Party for the past thirty-five years, with a view to their transmissiou, as directed by you, in separate sets, original and duplicate, to your head-quarters.
(5.) At Indarpoor I met by appointment Major Francis and Major Waddington (who had had charge of the survey of that district), and who explained to me exactly what they wished to be done.
(6.) The Revenue Survey map of the Indarpoor district is merely a map of fields on a very large scale; the boundaries of these fields are laid down with considerable accuracy by the chain alone. Traverse circuits are run round the boundaries of the different villages with theodolite and chain. Major Francis provided me with an index map of the whole district, in which all the traverses were plotted on the scale of one mile to an inch, and the points of junction of the village boundaries shewn by symbols. The origin or starting point of the traverses was not shewn, nor was there any north and south line. The traverses were protracted in, and made to accord as best they could, no attempt having been made to combine the work with our trigonometrical points, one of our principal stations, Kalas H. S., in the centre of the district, not eveu being shewn.
(7.) Major Francis wished me to lay down accurately the positions of as many as possible of these junctions or "tewndas" (as they are technically called), in order that he might be able to prepare an accurate index map of the district on the same scale as the one supplied to me. IIc further requested that I would, if possible, have the ground delincated topographically.
(8.) Considering the weakness in numbers, and waut of topographical experience of my Sub-Assistants, and as, moreover, my ability to spare Mr. Anding for this exceptional work was entirely dependent on the remaining two Sub-Assistants keeping their health in the Canara jungles, and in the absence of any existing reliable topographical map which could be claborated, I had no alternative but to decline to attempt the execution of any topographical details. I therefore determined to confine my endeavours to fixing geographically as many of these tewndas as I could, and to furnish during the next recess, as soon as I should be able to prepare it, a chart on the scale of one inch to a mile, with all these points accurately protracted, giving also our G. T. S. points, both principal and secondary, not one of which was shewn in the map supplied to me.
(9.) In considering the best means of effecting the end in view, the first thing to be ascertained was the state of the secondary stations of the Great Trigonometrical Survey, whose operations had passed through a portion of the district. On examination, none of our secondary points were to be found (with one single exception), although the names were in existence in our records, and their latitudes, longitudes, heights, and azimuths had been duly and accurately determined. It appears that in many instances these stations had originally consisted of a single stone imbedied, perhaps, in the centre of a large flat field, on the top of a ligh piece of pround, with no means whatever of identifying the same. These marks were useless without the most minnte and accurate description of their whereabouts, from the simple fact that the ground is either so mildly undulating that search might be made for hours before the highest point in the neighbourhood could be discovered, or else consists of high, flat tablelands extending from one-fourth of a mile to several miles in length, and generally covered with stones large and small. These table-lands are so flat that, if three or four different men were sent at different times, they would probably none of them select the same spot as the highest. Unless, therefore, very carcful descriptions of these stations were forthcoming, it was almost useless making search for them. Unfortunately, no descriptions of any sort were to be found, and hence only one station was discovered. The station at Indapore itsclf could not be found, although the old man who originally gave signals from it was present in my camp, and aided in the search for it. From these considerations it appeared to me, lst, that it was little
or no use attempting to make use of any former secondary work; and, 2ndly, that to make the work of any practical utility to future detail surveyors, it was essentially necessary to build permanent stations at all secondary points, or, rather, at all chicf points of my proposed minor triaugulation. I determined therefore to break up the priucipal triangulation afresh, and to cover the whole of the district to be surveyed with a net-work of triangles having sides from three to five miles in length. At each of these stations I directed my assistants to build, with large stones, a platform eight feet square and two feet high, surrounding an iselated pillar of lime and stone for the instrument to rest upon, of the same depth, and two feet in diumeter. From these stations the tewndas and other points were to be fixed by intersection if possible, otherwise by a series of minor triangles.
(10.) Mr. Anding received instructions to write in his angle book such a description of every station that any stranger coming to the country should easily be able to rccognize it. He was also directed to hand over the stations to the care of the neighbouring village authorities, and these latter were warned, at my request, by the revenue officials that they would be lield responsible for all wilful damage done.
(11.) I regret to say that Mr. Anding did not strictly adhere to the former part of these directions, as I found, when he rejoined me at Bangalore, at the end of the field scason, that of thirty platform stations only nine were described in such a manner as to euable them to be easily found. Fortunately, in this particular case, this neglect of orders will not be productive of much inconvenience hereafter, for owing to the number of tewndas fixed, the stations can always be easily found by any one provided with a chart of the triangulation, the exact positions of the tewndas being well-known to the village officials.
(12.) I remained some time with Mr. Anding in the field to start the work, and to determine the best means of accomplishing the end in view. I found it was impracticable to toke the principal observations and cut in the tewndas at the same time, owing to the large number of signalmen that would be required, aud the difficulty, or rather impossibility, of discovering the whereabouts of the different tewndas within sight at one station within the time required for the principal observations at each station. I directed him, therefore, first to complete the whole of the net-work triangulation, and, while so employed, to send men round from each camp to accompany the village pátels (head men) round their respective village boundaries. At ench tewnda these men were to note what stations were visible, and a book containing all their reports was to be kept, and filled in every evening. By adopting this plan he had ready, when the principal triangulation was completed, a rougl approximate chart, by means of which he was enabled, when visitiug the stations a second time, to fix, with as little delay as possible, the different village marks, which unfortunately are often placed in hollows and on low ground, invisible from ang of our chief stations, and to fix which (should it be of sufficient importance to warrant the extra trouble) a minor serics was to be carriced from one of the principal sides. This estra labour was only to be undertaken when the tewndas in question occupicd large gaps, in the vieinity of which no other boundary-marks existed, or could be conveniently fixed.
(13.) The instrument employed was a 12 -inch theodolite, easily carried with its stand by three men. At the chicf stations observations were taken on two pairs of zeros, two observations being taken on each face. For the intersection of tewndas, \&c., \&ce., one observation on F. R. and one on F. L. was considered sufficient.
(14.) As at the time of writing this report the observations are only in process of being reduced, I can scarcely form an opinion as to the manner in which Mr. Anding (who was cmployed on this work throughout the whole of the past season) has carricd out the instructions that were given him, but I propose making a special report on the subject hercafter. I will now merely state that he remained at work in the field up to the 8th May, when he proeecded vid Poona, Bombay and Cochin, to my recently established head-quarters at Bangalore, which place he was unable to reach until the 12th June, having been greatly delayed by the monsoon on the west coast.
(15.) Whilst I was employed in starting the work described above, all available assistants
were occupied in arranging, sorting, and completing the old records of the Bombay Party, prior to despatch to head-quarters, Deyrah Dhoon. It was very essential to complete this work before starting to commence the principal triangulation, as it would never have done to have risked carrying about with me by land and water the valuable records of so many years.
(16.) I returned to Poona at Christmas (leaving Mr. Anding in the Indapore districts), and despatched thence the original records, leaving the duplicates in charge of the exccutiva engineer. I then procceded to Bombay, and engaged pattemars (coasting craft) to take myself and establishment down to Goa, where, accompanied by Mr. Bond, I arrived on the morning of the 12th January, after a journey of two and a-half days in a ten ton boat. The instruments and establishment did not arrive till three days later, having been in a heavier and slower boat.
(17.) When Captain Haig had visited Goa in former years, the Bombay Government had applied to His Excellency the Governor General of Portuguese India for permission fir our Survey optrations to be carried through his territory. As permission was then granted, I did not deem it necessary to apply again through the Bombay Government, but wrote direct to the Chief Secretary to the Government at Goa, requesting the good services of His Excellency in carrying on the work. I must here cordially acknowledge the handsome manner in which every assistance was given to me by the Governor General and staff in facilitating the proyress of the operations. Orders were issucd to the custom-house authorities all over the district to pass my baggage free, not only of custom duties, but of the usual annoyance of examination and search. Sepoys also were attached to my camp, to aid in procuring supplies. No amount of assistance however could avail to remove the physical obstacles presented by the mountains and rivers which had to be traversed to get from one station to another. Hence, although but three stations, Bori, Salili, and Agoada, had to be visited, and in no case had more than two angles to be measured at a station, the weather being fine and clear, yet I was the better part of a month in getting through this small amount of work.
(21.) I had hoped to get straight across the gháts to Dharwar, but this was found impracticable, owing to the difficulty of procuring carriage. The road, moreover, was reported as being just then exceedingly unhealthy, so, Agoada being on the sea coast, I had determined to proceed vid Karwar; accordingly, the day after closing work, I goteverything on board pattemars, and started for Karwar.
(22.) We reached Karwar on the evening of the 3rd February, but were detained until the 6th by difficulty of procuring carriage, when we started, marehing vid the Arbyl Chát, a very ronndabout but a good road, and proceeding by the regular marches to Samtrani, twenty-four miles north of Yellapoor. We there cxchanged our carts for bullocks and coolies, and diverged to Kanserudi H. S., one of the west flank stations of the Ganigud polygon, which we reached on the lGth instant. The south-west flank and centre stations of this polygon are in the dense Canara forests, the best wooded, I believe, in western India.
(24.) After the checks already mentioned as having been met with in the Goa districts, the work of the principal triangulation proceceled smoothly enough till I reached Indur, at the end of March. In Goa the nir was clear, and the weather, on the whole, very favorable, the morning heliotropes being best and steadiest, a very unusual occurrence, us far as my experience goes, but caused, I imagine, by the sea breeze, which at that time of the year used not to set in till evening, continuing till late at night, causing wonderfully clear mornings, and a very steady atmosphere. As the sun got up mists gradually rose, and by ten or cleven o'clock the air would be very thick, getting later on in the day impenetrable by rays from either afternoon heliotropes or lamps, which latter would generally be good signals early in the morning.
(25.) Above the gháts, when I took up the Main Serics, the weather was somewhat the name in that before the sun rose the air used to be very clear, but the moment the sun got alove the horizon mists rose with it, and what was a few minutes before a verdant landscape, became almost miraculously transformed into an apparently foaming sea, with the tops of the highest hills towering above the gencral level like green and rocky islands, the tops of the moving clouds laving the appearance of rolling billows, altogether a most magnificent spectacle,
not unimproved by the brilliant flashes of the heliotropes seen over this sea of clouds. This appearance is not lasting however, for the mists soon rise, enveloping everything, and not generally dispersing till nine or ten a.m.
(26.) These phenomena occurred early in the season, and of course morning heliotropes were rarely, if ever, attainable. The afternoons were generally thickish, but used to clear towards sumset, and the air, purified by the sea breeze, was generally good for lamps. Later in the season, however, these mists, instead of rising about suurise, used generally to begin to form about eight or nine o'clock in the eveuing, when, just as we had fairly commenced working to lamps, then bright and clear, first one and then another would suddenly disappear, never to show again till the next evening, whilst the mists would at last rise and surround the observatory tent. These mists never cleared off in time for morning heliotropes, and consequently for the greater part of the season nearly the whole of the observations were taken in the afternoon, when the signals were generally good. On one occasion I took no less than fifty-seven single measures of angles working to afternoon heliotropes. In April and May the work was very much interfered with by passing storms, though these were so local that sometimes I lare gone on steadily working to capital heliotrope signals, when, perhaps, the sun never shone on my own station the whole afternoon, and the hill seemed surrounded by storms.
(27.) The smoke from the burning jungles sadly interfered with work, especially when there was no wind stirring. A steady breeze was always of great service in clearing the air. The villagers begin to burn these jungles towards the end of February, and light them regularly at two or thrce o'clock in the afternoon, continuing this till the heavy rains set in. Of course one would avoid visiting these stations at that particular season of the year if possible, but it is, unfortunately, the only time they may be visited with impunity from fever, the curse of the district. Some idea of the virulence of this fever may be inferred from the fact of my having seen at Poona some printed recent correspondence of the Bombay Government, wherein it was proposed to withdraw the whole of the Public Works Establishment (European) from North Canara. This was of course not acted on, but I believe orders were issued that officers should be relieved every year.
(28.) My assistant, Mr. Christie, who was working in the district the prcvious season (January 1866), informs me that, when he was marching, the coolies used as a regular thing to put down their loads for two or three hours in the middle of the day, have their bout of fever, and then go on again.
(29.) By taking the precaution of not entering these jungles till the healthy season, my party escaped with comparatively little illness for a couple of months; but, after the first heary rains had fallen in April, Mr. Christie's party, which was in advance building stations, wns the first to suffer, and he wrote from the last station of the polygon I was then engaged on, to say that he could not move, the whole of his camp being down with fever. I ordered him to Sircy, the head-quarters of the district, as soon as he was able to move. From that time he was never able to do any independent work, there being no available men to send with him. From this date there wns a good deal of sickness in my own camp, but, by taking Mr. Christie's convalescents, and withdrawing ail the secondary siguallers, I was enabled to keep on, and finish the observations of the Kalraniguda compound figure at Chanduguti on the 20th May.
(30.) I could not have done another day's work, for, on that same afternoon, I was attacked with fever myself, and on the following day my observatory assistant, Mr. James Bond, was seized with the same disease. All the signal partics that then came in were suffering more or less, besides nearly the whole of my standing camp. The fever was not of a malignant type, its effects, however, being unfortumately more insidious than outwardly visible, as is evident from the fact that although only one man actually died in the field, yet two have died at Bangalore since I arrived, out of a small party, and another died while on his journcy home on lenve.
(31.) When first entering those jungles, of which the natives have a strange, and not altogether unjustifiable, dread, I was very much annoyed by frequent descrtions both amongst
my own servants and the Government khlassies. Fortunately none of the old hauds went, all deserters being comparatively recently entertained men, but the utter impossibility of replacing any one, and the fear that I should soon be left very short-handed, induced me to take stringent measures to prevent it. A case occurred in which a man absconderl, after robling Government of a few rupees, and also some of his fellow khlassies. I fortunately succeeded in retaking him, and got him summarily disposed of with six month's hard labor. Not a single case of desertion occurred afterwards.
(32.) Owing to this cause and to sickness, and the consequent paucity of men, I was only able to observe to very few secondary points. The nature of the country is such, however, that there was scarcely ever a prominent temple or similar object to be seen, nothing but dense forests meeting the eye. Hence, with one or two exceptions, what secondary points were obscrved consisted of platforms built by Mr. Christie on his journcy ahead of me. These were built on prominent hills, whose tops had generally to be cleared of forest, in order that the heliotrope should be visible therefrom.
(35.) Mr. Sub-Assistant Anding's work during the season has already been partially reported upon. Although Mr. Anding has not attended so carefully to the instructions he received as might have been desirable, yet he has, on the whole, done a good season's work, and appears to have worked hard and diligently when in the field.
(39.) I have every reason to be satisfied with Mr. Christie's work during the season. Had he met with any serious stoppage it would have put a temporary stop to principal operations, the stations he was constructing being immediately in advance, and inconveuiently near to my own work. This could not have been avoided, illness having detained the building party the previous year, and it being unsafe to send parties into these jungles earlier than I entered them myself.
(41.) My observatory assistant throughout the season's operations was Mr. J. Bond, who was appointed to the Department as 4th Grade Sub-Assistant ouly a few days prior to my taking the field. I am very well pleased with the progress he has made, and he promises to become a uscful and hard-working assistant.
(42.) The progress of the future operations of this party will now be necessarily slow, the physical features of the country and the bad climate being both difficult to overcome. The country over which the principal triangulation will pass is very hilly, wild, and thinly populated, and carriage is only to be procured with great difficulty.

extract from tee narrative report of liedtenant t. t. carter, r.e., surveyor 3bd grade, in charge fomaon and aurhwal series g. t. subvey, dated 3lst adgust 1867.

During the season under review the Party has been employed on the Topographical Survey of Mussoorie and Landour, on the scale of twelve inches to the mile, and the Trigo-Topographical Survey of British Gurhwal and Kumaon on the $1^{\prime \prime}$ scale.

On the return of the Party from the field in the month of May 1866, the triangulation of Mussoorie and Landour was extended, and sufficient points were fixed to enable the plane-tabling to be continued; this was sub)sequently done after the cessation of the rains; 1,666 acres were surveyed by Mr. J. Peyton, Civil Assistant 3rd Grade, and 455 acres by Mr. J. Low, Sub-Assistant lst Grade. The work completed by Mr. Peyton comprised the whole of Landour, and Mr. Peyton seems to have taken great pains, the detail, which, in some places, is intricate, having been carcfully shewn. The whole of that portion of the Mussoorie settlement, where habitations are numerous and in close juxtaposition (with the exception of a small portion of Mr. Low's plane-table which requires to be finished), has now been completed.

During the two previous field seasons the topographical work in British Gurhwal and Kumaon had been confined entirely to the inner hitls. In the present season the operations were carried into the forests which skirt the plains of Bijnour. The difficulty of travelling about and obtaining supplies in this portion of the district 1 have mentioned in previous reports, and as Government had sanctioned the use of eight elephants for the Party for the season under review, I determined that the survey of this tract of country should be pushed on as vigorously as possible during the time that the Surveyors could work there, viz., from the 15th of December to the 15th of March, or to the lst of \dot{A}_{1} ril. I therefore personally supcrintended this piece of work, and deputed different officers to take up different portions, calling them down from the higher hills, to return when they had completed their portions of the low ground. Owing to the willingness aud ready co-operation displayed by the different officers employed with me, I was enabled by the lst of April to finish the survey of the whole of that band of forest land extending from Gaori ghait on the Ganges, to the fiscal boundary betwern Gurhwal and Kumaon, viz., the Koti Rao Sote. In addition to this piece of work, a consideral)le portion of the inner and higher hills was topographically surveyed, and a sufficient anount of secondary triangulation for the operations of uext scason was completed.

The work on which the different officirs, as per margin, were employed during the fiedl

Licut. T. T. Carter, R.E., Surreyor 3rd Grade, in charge.
A. Pullan, B.S.C., Asgialant Surveyor lat Grade.
" J. Fill, R.F., Assistnnt Surveyor 2nd Grade.
Mr. E. C. Ryall, Ciril Asaistant 3rd Grade.
J. Peyton, Civil Assistant Bral Grade.
"J. Low, Sub-Aasigiant 1si Grale G. T. S.
," C. Braithwnite, Sub-Assiatant 2nd Grade.
, H. Toild, Suh-Assistant 4th Grade G. T. S.
, C. Bryson, Sub-Assistant wh Gracle G. T. 日.
" A. Low, Proliationery Sub-Assistant 4th Grade.
season, and the progress made by each, will now be noted scjarately.

Towards the end of September preparations were made for the Party to take the field. The projection of plane-tables for the different Surveyors was commenced, the first to take the field being Mr. E. C. Ryall, Civil Assistant 3rd Grade, who left Mussoorie, en route for Gurhwal, on the 11th of October 1866.

Between that date and the lst of November the rest of the Assistants procecded to take up work on the diflerent portions of the district allotted to them. Having disposed of the different Assistants, until 1 required their scrvices in the low forest ground or bhabur, which could not be taken up till the 15th of December at the earliest, and having therefore over a month before I could proceed to take up the triangulation of the bhabur, I determined to build over
and protect as many of the principal stations as I could in this time, and ou the 1st of November I proceeded to the station of Ghundial, and subsequently to those of Maniknath, Ranigurh, and Marbegurl, the two former in the Teeree district, the two latter in Gurlwal.

I was also desirous of personally superintending the building up of the first few stations of the Series, with the view of ascertaining the cost, proportion of bricks to stone, and best way of covering up the pillars to protect them from rain, snow, \&c. The bricks and lime had to be taken from Delura; the former were the ordinary small bricks used by the natives, called lackouni, and these were well addapted for linding together the stome, with which the rest of the pillar was built. On each pillar not more than eighty of the small bricks were used, and chiefly at the junction of the plane surfaces of the pillar, the remaining portion of the pillar being built with well-cut stones. The top of the pillars consisted of two layers of brick, to the surface of which the station marks were transferred; as an additional protection the pillars were covered with piles of earth mixed with grass or xice straw, the latter being used where procurable, as it made the earth more adhesive. The station at Marlegurh was completed on the 5th of December, when I procecded to Dehra to arrange for taking up work in the blahar.

On the 17 th December I marched to take up the triangulation of the bhabur. Betreen the 1st January and loth February I observed from seventeen seconlary stations, fixing ninetythree points, and computed out and projected the same on four plane-tables for Lieut. Pullan, Messrs. Ryall, Peyton and H. Todd. It was necessary that the whole of theee points should be worked out and given to the plane-tablers at a not later date than the l5th February, as that would only allow them one and a-half months each to complete the work allotted to them. The working out of the computations connected with these points was carricd on between the intervals of observing by myself and Mr. C. Bryson, Sulb-Assistant 4tı Grade. Mr. Bryson, who joined the Department in October 1865, is an accurate and rapid computer, worked checrfully and well, and it is chiefly due to this that I was enabled to complete the survey of so much of the forest ground. Before leaving the low ground, the lst of A pril, I had personally inspected on the ground a portion of the work of Licuf. Pullan and that of Messrs. Ryall, Peyton and H . Todd, marching through the country they sketched, and putting up plane-talles at different points. In mountainous countries, such as that of Gurhwal and Kumaon, I know of no better way of checking the work of the assistants, as a clain traverse check, as adopted by the Topographical parties in the plains, is totally impracticable.

In my instructions to each officer on taking the field I directed that he slould note, to the best of his ability, such information, with reference to the particular district in which he was cm ployed, as would assist in drawing up an interesting account of the whole district, when we shall have completed the survey of British Gurbwal and Kumaon. Officers on topographical work, employed as they are for some time in one particular portion of the district, have great opportunities of learning the manners of the people, the trades they work at, the crops, forest trees, and animals to be met with, also the history of any ancient remains, all of which will be most useful, and add greatly to the value of the survey. I am glad to mention that Lientenant Pullen, Messrs. Ryall, Peyton and H. 'lodd have carricd out my wishes in this respect, and have recorded much valuable and interesting information respecting the people, flora, fauna, \&c., of that portion of the district they were respectively employed on, and I have appended to this report extracts from their respective journals. The district of Gurhwal and Kumaon abounds in ancient ruins of temples, and the flora and fauna is very varied, as it must be in a country extending from the plains up to the snowy range, 25,000 fect high.

Lieutenant Pullan's work consisted chiefly of bhabur ground, with the exception of the

 upper portion of the plane-table section included between lat. $29^{\circ} 45^{\prime}$ and $30^{\circ} 0^{\prime}$ and long. $78^{\circ} 15^{\prime}$ and $78^{\circ} 30^{\prime}$, which he procceded to take up, pending the arrival of the clephants. Lieu-Limutenant A. Pullan, B.S.C., Assigtant. Surveyor 1st Grude G. 'I. Siurey. tenant Pullan took the field the 10th of November 1806, and by the 1st of December had completed the survey of the upper portion of the above mentioned plane-table, but on completing the sume, visiting the lower spurs that desceud towards the Ganges, he unfortunately got an attack of jungle fever, which he never entirely shook off' for the rest of the season; he was, however,
enabled to keep out at work till the 14th of March, finishing his first plane-table, and completing the lower half of the plane-table section lying between lat. $29^{\circ} 30^{\prime}$ and $29^{\circ} 45^{\prime}$, and long. $78^{\circ} 45^{\prime}$ and $79^{\circ} 0^{\prime}$ (the upper portion of which Mr. H. Todd completed). I was enabled to examine this portion of Lieutenant Pullan's work, and ascertained that it fairly represented the ground.

Lieutenant Hill joined the Department on the lst December, and, on his reporting himself to me, as directed, I requested him to join my camp, so that he might accompany me to learn his new duties. Lieut. Hill remained with my camp for three weeks, accompanying me on Licutenant J. Hill, R.E... Assistant
Survcyor 2nd Grade G. T. Surveg.
all occasions when observing, also practising independently with the instrument with which he was to extend the secondary triangulation. On the 15th of February he started to take up in. dependent sccondary triangulation, closing work on the 31st of May, during which time he visited twenty-one stations, observing twenty-six triangles, of which three angles were observed, and fixing seventy-two intersected points. The results of these observations, as determined since his return to head-quarters, have proved very satisfactory.

Mr. Ryall took the ficld on the 11th of October, and continued working in Gurhwal, in the higher hills, till the lst of January 1867, when he proceeded to take up a plane-table of the low or bhabur ground, of which he completed 143 square miles. I inspected this portion of Mr .

Mr. F. C. Ryall, Ciril Assistant Srd Grude G. T. Survey. Ryall's work, visiting several high and commanding points, as well as other low ones, on the line I took through his board. The out-turn of M_{r}. Ryall's work is considerable, and I have much pleasure in certifying to the accuracy of the same, and the pains taken. Irrespective of the physical difficulties of the ground, were added those of procuring supplies, and coolies for cutting rays, \&c., all of which Mr. Ryall overcame. On the completion of the work deputed to him of the low ground, Mr. Ryall proceeded to complete his first plane-talle. I would beg to bring Mr. Ryall to your favorable consideration for promotion; as the Senior Civil Assistant attached to the Party he has given me every satisfaction.

Mr. Peyton took the field on the lst November, and till the beginning of February was

Mr. J. Peyton, Civil Assiatant 3rd Grade G. T. Surver. cmployed on the higher hills of Gurhwal and Kumaon. In Feb. ruary I deputed him to survey a portion of the bhabur ground, which he did to my satisfaction, on the completion of which be returned, and completed his plane-table section of the higher hills. Mr. Peyton's out-turn of work is good, but I should have preferred seeing less in quantity of a superior quality.

This officer took the field on the 1st November, and was employed till the 4th April

Mr. J. Low, Sub-Aesietant 1st Grade G. T. Survey. plane-tabling in the Kummon district, during which time he completed 182 square miles. On examination of Mr. Low's work in the field, I found that the main ridges, streams, and positions of villages were entered accurately, but Mr. Low's delincation of the fentures of the ground is such that it is impossible to pass his work, and it will have to be done over again.

Mr. C. Braithwaite took the field on the 20th of October, and continued at work in the field till the 22 nd of April. I inspected Mr. Braithwaite's work in the ficld, and have much plensure in reporting that the same is accurately and carefully done, and I have no reasou to change

Mr. C. Braithwaite, Sub-Assistant 2nd Grade G. T. Surrey. the favorable opinion expressed of Mr. Braithwaite in my last report.

Mr. H. Todd took the field on the 15 th of October, and continued working in the higher hills till the lst January, when he took up a second plane-table,

$$
\text { Mr. H. Torld, Sub-Aanisiant } 41 \mathrm{~h}
$$ Grade U. T. Surrey. composed chiefly of bhabur ground. Mr. H. Todd has done his work most creditably, and I tested the accuracy of the same on the ground. He has taken muel pains, and has succeeded vory well in representing the characteristic features of the ground on which he was employed; his work will already bear favorable comparison with several of his seniors.

Mr. Bryson accompanied me till the lst March, carrying on the current dutics convected with the office, recording, and computing out the points necessary for topographically sketching the bhabur of Gurhwal. Connected with the triangulation for this portion of the district,

Mr. C. Bryeon, Sub-Assiatant 4th Grade G. T. Survey. observations were taken from 17 stations, 160 triangles were worked out in duplicate, fixing 93 points, of which the latitudes and longitudes of 33 were computed, and this between the lst January and 15 th February. Mr. Bryson, in assisting me with this work, after recording during the daytime, had frequently to work late at night, and always worked willingly. Mr. Bryson is a good computer, neat and accurate. While at work in the bliabur, I took the opportunity of training him in the use of the theodolite, the instrument being entirely dismantled, cleaned, and re-adjusted before him; and, having seen that he was capable of carrying on secondary triangulation, he was from the lst March to the time of his return to head-quarters employed on indepeudent secondary triangulation with an 8 -inch theodolite. During this time he observed from 22 stations, fixing 72 secondary points. 1 have every reason to be well pleased with Mr. Bryson, and beg to bring him to your notice for promotion, as soon as the rules of the Department will permit of it.

In concluding this report, I would beg to place on record that every assistance has been offered by the civil authorities of the district, and in particular in the forest ground, where difficulties were enhanced from want of local information, there being no guides, \&c. The forest officials rendered us every assistance, by placing their most intelligent rangers and patrols at the disposal of the Survey officers. I have in particular to thank Mr. R. Thompson, the Assistant Conservator of the Gurhwal Forests, for the readiness with which he always furnished assistance to the Surveyors when required. Mr. Thompson is, particularly, in charge of the Gurhwal forests. The operations of last year were not extended to those in Kumaon.

During the season under review I am happy to report that we were comparatively fres of sickness, though cholera was raging during the whole time the operations were going on in the bhabur. Only five men died during the season, two from ordinary causes, and tbree from cholera, on the return of the Party to head-quarters.
extract from the narrative report of captain c. t. haig, r.e., in charge
kattlawar party g. t. survey, dated poona, lst july 1867.
(2.) As intimated in my last year's report, I received charge of this Party on the 3rd Marel 186.4. It was then employed on the survey of the Island of Bombay, and it not haviag becn decided until the 10th October that the field of our operations should be shifted to Kattiawar, the Party was employed during the whole of the recess on reducing the computations, and plotting the traverses, \&c., of the survey of Bombay.
(3.) When I received charge of the Party the computations of the principal triangles (of which the three angles had been observed) had been computed, and the splherical co-ordinates of all the trigonometrical stations worked out. This had been done during the field season, in order to furnish the traverse surveyors with correct azimuths as soon as possible, for it was deemed advisable to test the traversing mathematically as it progressed, and for this purpose, in the absence of a correct azimuth, an approximate meridian had been assumed (which afterwards proved to be about 10^{\prime} inclined to the true meridian), and the traverses had been tested by Gale's circuit method.
(4.) The traverses consisted of simple circuits, without any off-sets, and were intended merely to furnish the Revenue Survey Party with a number of points of departure; but, on joining, I found that the traverses were being carried on almost entively independently of the triallgulation, which was very elaborate. I therefore had the traverses which had been previously computed connected with any trigonometrical points in their vicinity that offered, and gave directions to have the traverses in future run so as to strike as many trigonometrical points as possible.
(7.) Wishing to furnish the Revenue Survey with as accurate elements of all our points as possible, and wishing also to furnish them with elements of the trigonometrical points which they could understand (spherical co-ordinates being altogether beyond them), I determined on introducing a system of rectangular co-ordinates, to which I should refer all points whether trigonometrical or traverse stations, which of course necessitated the recomputations of the traverses.
(8.) This, as it turned out, was perbaps a work of supererogation, but I feel convinced that had the Northern Bombay Party returned to continue the Bombay Survey, we should hare saved time, on the whole, by the introduction of the rectangular co-ordinates, and, as it is, I believe had I not introduced them, the whole of the elaborate triangulation would lave been left entirely, or almost entirely, unused.
(9.) I therefore selected a central station, and made the ordinates of Y parallel, mud the ordinates of X perpendicular to its meridian, and then computed the co-ordinates of all the trigonometrical points, which was the work of but three or four days.
(10.) This done, the co-ordinates of the traverse stations were computed with the assistance of a traverse-table. As each traverse closed on a trigonometrical station, a test of the accuracy of the traverses was aflorded ly the agrecment of the co-ordinates of that station, is determined by the traverse, with those determined by the computations alluded to in para. 9 , and discrepancies were proportionally distributed over all the intermediate traverse stations.
(13.) The following charts were prepared as the progress of the computations permitted :One chart of triangulation in one sheet, scale one foot = one mile; one map in one slicet, one foot $=$ one mile (commenced). All trigonometrical points and traverse stations were pricked on to it, and lightly marked in pencil, and a small portion of detail near Mahim plotted by reduction from the Revenue Survey maps. This was intended to be an office copy of the final map.

One map, soale twelve inches $=\mathbf{l}$ mile, in seven sections, each section containing four squares of 1,000 fect each side. All trigonometrical points and traverse stations were laid down on these sections by five points, and a small portion of detail in one section plotted by reduction from the Revenue Survey maps. These sections were intended to be forwarded, as the details were filled in, to your office, to be reduced to half size, but were ultimately handed over to the Superintendent of Revenuc Survey Party.
(14.) The following is a list of data supplied to Major Laughton, Superintendent Bombay Revenue Survey Party :-

Traverse Field Books, Principal Circuits, Do., Minor Do.,
Traverse Computations, Principal Do.,
Do., Minor Do.,
Table showing lengths of trigonometrical sides in feet and miles.
(16.) I now proceed to report on the operations of the Party, in connection with the survey of Kattiawar.

On the 16th October the Party left Poona for Kattiawar, I, myself, remaining behind to hand over charge of the Bombay Party to Lieutenant H. Trotter, who lad not then arrived, and to wait your arrival and inspection of the Bombay Party records, according to your instructions received by telegram.
(19.) Lieutenant Trotter arrived in Poona on, I think, 25th October, and received charge of the Bombay Party on the 1st November.
(20.) I left Poona on the 15th November, you having in the meantime arrived and inspected the records of the Bombay Party, and started the previous day for Rajkote, aud you afterwards joined my camp at Wartej on the 27th November, when I had called all the Assistants, with the exception of Messrs. McGill and Gwinn to meet you.
(24.) On your deciding that the survey of Kattiawar should be executed in the field on the scale of two inches to a mile, of course all the plane-tables had to be remounted, and it was also at once necessary to break up the trinngulation much further than had previously been done ; accordingly, I apportioned off twelve plane-table spaces, the triangulation of which was immediately required among Lieutenant Dummler, Mr. McGill, and Mr. D'Souza, directing them to furnish as many new points as would with the old give one point on an average to every four square miles, and I allotted to Messrs. Gwinn, McA'Fee, Rendell and Wyatt a plane-table each, directing them to commence at such parts as were already furnished with trigonometrical points, while the further triangulation of their plane-tables was being carried on.
(25.) On the 6th December we separated from Wartej, and started for our respective loci operandi. I accompanied Licutenant Dummler for some days, until he acquired sufficient confidence to work alone, and then I returned to Gogo.
(27.) I deemed it advisable to start the organization of a boundary survey, in anticipation of the orders of Goverament, and therefore I undertook the survey of the boundary of the Gogo talooka.
(28.) Having Captain Nasmyth's ten-feet standard bar with me, I laid down a standard 100 feet on the wall of Gogo, each end-mark being a cut in the head of a brass screw, embedded in lead poured into a hole cut out with a stonc chisel for the purpose.
(36.) As Mr. Gwinn was superintending the boundary survey at Chambardi, I sent for his board for a day to show Colonel Keatinge, and both he and Captain Watson, the Assistant Political Agent of the district, were very much taken with the two boards (Messrs. Gwinn's and $W_{\text {yatt's }}$). There happened at the same time to be a difficulty about selecting a line for a new road from Palitona through Soupuri, to join the Alimedabad and Gogo road, and with the assistance of these two boards the best line for the road was immediately determined.
(42.) To Lieutenant Dummler I allotted the triangulation of the four plane-tables between parallels $21^{\circ} 22^{\prime} 30^{\prime \prime}$ and $21^{\circ} 37^{\prime} 30^{\prime \prime}$, and meridian 72° and $72^{\circ} 15^{\prime}$. He commenced on the 8th December, and completed
Licutenant Dummler. the observations on the 31st January, haviug leen detained by an attack of fever, which compelled him to go into Gogo for medical attendance, where he remained a week. He then spent twelve days reducing his observations, after which, finding he had not quite sufficient points in the plane-table he was nbout to commence filling in, he spent a few days more in laying down some additional points, and commenced plane-tabling on the 20th February.
(42.) In the four plane-tables le laid down altogether seventy new points, which, with the old, gave an average of one point to $3 \cdot 1$ square miles. He worked with a 6 -inch theodolite, taking four measures of each angle, two at F. R. 0°, aud two at F. L. 180°, and one reading at each face to intersected points, vertical observations by rounds, one reading at each face to all stations and all intersected points which could be taken.
(44.) His triangle shects exhibited an average triangular error of $2.4^{\prime \prime}$, and the average discrepancy per mile in lengths of sides deduced from seventeen sides of comparison is 8.1 inches.
(45.) As he only commenced plane-tabling on the 20th February, he could but complete one plane-table, which he did with great care, working throughout on the back and forward ray principle, and making judicious use of the perambulator. His plane-table stations average 59 per square mile, and the check line of survey shows his work to be exceedingly accurate.
(46.) He complcted his table on the 11th April, but he again fell sick with fever, otherwise I had intended him to lay down some additional points with a theodolite between Mr. McA'Fee's plaue-table and the coast, but I was compelled to allow him to close his season's work, and proceed to Surat for a few days change, before joining my camp at Domus.
(48.) Mr. McGill, as mentioned in para. 2], had triangulated four plane-table sections before the order for the adoption of the two-inch scale had been Mr. McGill. issued; lie fixed forty-eight new points, which, with the old, gave one point on an average to every 4.6 square miles.
(49.) After meeting you at Wartej, Mr. McGill triangulated the block between parallcls $21^{\circ} 42^{\prime}$ and $22^{\circ} 15^{\prime}$, and meridians $71^{\circ} 30^{\prime}$ and $72^{\circ} 15^{\prime}$, covering twenty-five plane-table sections, laying down 530 new points, which, with the old, give an average of one point to three square miles.
(50.) Mr. McGill worked with a 12 -inch theorlolite, but one which was not in good order. He took one obserration at F. R. and one at F. L. to all objects. His average triangular error was $13^{\prime \prime} \cdot 5$, and the average discrepancy per mile in lengths of sides deduced from twelve sides of comparison taken at random was 10.6 inches.
(51.) To Mr. D'Souza I allotted the triangulation of the four plane-table sections between parallels $21^{\circ} 22^{\prime} 30^{\prime}$ and $21^{\circ} 37^{\prime} 30^{\prime \prime}$, and meridians $71^{\circ} 45^{\prime}$ and 72°. He started from Wartej on the 6th llecember, and completed his obscrvations on the 30th January, baving laid down 101 new points, giving, with the old, an average of one point to 3.5 square miles. He worked with a 6 -inch theodolite, taking four measures of each angle, two at F. R. 0°, and two at F.L. 180°, and one reading at each face to intersected points.
(52.) Mr. D'Souza spent twelve days with Licutenant Dummler to reduce his obseriations, during which time he also afforded assistance to Mr. McA'Fee in planc-tabling, as mentioned in para. 34, until the latter had fully overcome the difficulties of hill sketching, after which he (Mr. D'Souza) returned to his own ground, and commenced plane-tabling on the 14th February.
(53.) Mr. D'Souza was twice detaincd by sickness, once by a bite from some poisonous
insect, which caused his leg to swell so much, and produced such pain, that he was unable for several days to put his foot to the ground, this was accompanied by fever, and detained him a week; he was afterwards detained twelve days by an attack of dysentery, which compelled him to go to Gogo for medical attendancc.
(54.) With these delays, and having but commenced his plane-tabling on the 14th February, he was only able to fill in one table, which is very neatly executed, and agrees well with the check-line. His average number of plane-table stations is 5.8 per square mile.
(55.) Mr. Gwinn, as mentioned in para. 22, completed 25 square miles of plane-tabling

Mr. Gwinn. on the one-inch scale before I recalled him to head-quarters to take up work on the two-inch scale. He started with his new planetable on the 18th December, and finished it on the 14th March, having, however, in the meantime been employed superintending the Chambardi boundary survey from 22nd January to 14th Fcbruary during my absence, as mentioned in para. 32. He commenced his second board on the 23 rd February, and finished it at the close of the season. His work is very neatly executed. The average number of plane-table stations is 6.74 per square mile in his first table, and 3.75 in the second.
(56.) Mr. McA'Fee was transferred to this from the Bombay Party on the 1 st November, consequently he started for Kattiawar somewhat later than the rest of the Party, and so had hut a very few days instruction from Mr. D'Souza before your arrival at Wartej. His plane-table had but a very few old points in it; he was therefore detained some time assisting Lieutenant Dummler in computing the elements of the points he required. He was also laid up for a month, from 12th February to 12th March, with an attack of opthalmia. He remained during that time under the medical treatment of the apothecary at Gogo. Consequent on these delays, he only completed oue planetable. His average of plane-table stations was 5.8 per square mile.
(57.) Mr. Rendell completed two plane-tables. His exceution is extremely neat. His average of plane-table stations was 8.4 per square mile on his first table, and $5 \cdot 4$ per square mile on his sccond.
(58.) Mr. Wyatt also completed two plane-tables very neatly, with an average of eight Mr. Watt. stations per square mile in the first, and $3 \cdot 5$ in the second.
(60.) Wissagee Ruggoonath, Native Surveyor, was employed the whole scason on the traversing. He made himself very useful in assisting me to instruct the new Native Surveyors.
(62.) The six new Native Surveyors all promise well. Wishing to instil a thorough knowledge of the practical ficld operations, I postponed the mathematical reduction of the traverses uutil recess. Next season I expect each of them will be able to survey a boundary independently.
(63.) The Native Establishment are almost, without exception, natives from the vicinity

The Nalive Establisbment. of Poonn, and I found in Kattiawar that I could not engage men, even to serve in the burkundauze, on as low pay as I am paying the dekkanees. I do not think khalassics could be found in Kattiawar at all. The natives there are extremely leathe to take service which keeps them away from their village, even for a night, and are a lazy lot at any work.
(64.) The Party experienced some annoyance from thicves, who abound in the province, and who are very expert. Robberies occurred at five out of the Robberies. eight camps. We were fortunate, however, in being able to recover compensation for our losses from the durbars of the States in which the robberies occurred; but as it is very disagreeable to Political Assistauts to recover compensation, I, with the assistance
of Captain Watson, the Political Assistant, had to draw up a set of instructions regarding the proper measures to be taken for the protection of the camps, and the action to be taken in the event of robberies occurring. It entails rather a heavy charge for chowkidars, which, I believe, in other States are gencrally provided by the chiefs.
(65.) The following table shows at a glance the amount of each Assistant's work, and their comparative values :-

Nambs.			Plonetabling.	Stations per aquaro mile.	Triangulation aren.	$\begin{aligned} & \text { Mran } \\ & \text { triangular } \\ & \text { error. } \end{aligned}$	Averago per milo diserepancy.	Boundary survey.	Check lines.
			Squaro miles.		Square miles.		Inches.	Miles.	Miles.
Lieutenant Dummler,	70	$5 \cdot 2$	280	$24^{\prime \prime}$	$8 \cdot 1$
Mr. McGill, ...	\cdots	\cdots	\cdots	...	2,100	13.5	10.6'
" D'Souzn,	70	58	300	$15 \cdot 1$	66
" Grionn,	140	$5 \cdot 25$	\cdots	...	\cdots
" McA'Fce, ...	\cdots	\cdots	70	5.8	\cdots	. ${ }^{\prime}$	\cdots	...	\cdots
" Rendel!,	\cdots	140	6.9	\ldots	\cdots	\cdots	\cdots	...
" Wyatt,		\cdots	140	$5 \cdot 75$	\cdots	\cdots	\cdots
Native Surveyors,	...	\cdots		\cdots	\cdots	\cdots	\cdots	44	36

EXTRACT FROM THE NARRATIVE REPORT OF LIEDTENANT W. J. HEAVISIDE, R.E., ASSISTANT surveyor 2nd grade, in charge no. 2 extra party g. t. survey, no. 1, dated

 28TH AUGUSt 1867.(1.) In accordance with Department Order No. 41, dated 8th October 1866, I took over charge of No. 2 Extra Party from Mr. J. B. N. Hennessey from the lst of October 1866.
(2.) After making myself acquainted with the necessary forms and calculations, I was instructed in the use of the astronomical circle by Mr. Hennessey.

Make myself acquainted with the Astronomical Circle, \&c. I am deeply indebted to him for the great trouble he took in teaching me all the details connected with the instrument, and with the method of observing ; as also for the assistance he readered me in all my difficulties.
(3.) During October I took, under Mr. Hennessey's guidance, a set of star observations

Tuke a set of atar observations at Másuri.
for the determination of the latitude of the Másuri observatory. These observations I finished on the lst of November.
(4.) In accordance with the instructions contained in your letter No. $\frac{7}{\text { Gi3 }}$, dated 19th October 1866, four stations of the Gurhagarh Series were selected between latitudes 28° and $32^{\circ} 2^{\prime}$, at which it was proposed to take observations. The stations selected were-

Shahpoor T. S., latitude $32^{\circ} 1^{\prime} 34^{\prime \prime}$,
Sungutpoor T. S., " $31^{\circ} 17^{\prime} 35^{\prime \prime}$, an azimuth station,
Khimonana T. S., ", $30^{\circ} 22^{\prime} 15^{\prime \prime}$,
Sirsa S., " $29^{\circ} 31^{\prime} 36^{\prime \prime}$, an azimuth station.
(5.) For reasons stated in para. 24, Sirsa proved unfavorable for observing at, and conSirsm found unfavorable. sequently observations were taken at Sawarejoor T. S., latitude $29^{\circ} 39^{\prime} 14^{\prime \prime}$.
(6.) The Party consisted of myself, Mr. 2nd Grade Sub-Assistant J. Wood, and Mr. Party, of whom composed. 3rd Grade Sub-Assistant G. Belcham.
(7.) Mr. J. Wood left Delira with a portion of the camp on the 13th of October. He had received instructions to proceed to Shahpoor, and there build an observatory. 1 followed with the remainder of the camp and Leave Delirn. accompanicd by Mr. G. Belcham on the 8th of November, and arrived at Shahpoor on the 3rd of December.
(8.) I found the observatory completed, and after putting up the instrument, I comCommonec obecrantious at Shala- menced observing on the 6th of December. poor.
(9.) Both at Shahpoor and Sungutpoor the nights were unusunlly cloudy, so much so that it was quite the exception to obtain all the stars on any one night, and oceasionally ouly three or four intersections could be made during the night. At Khimonana and Sawarejoor the weather was much more favorable, but even at these stations I was a good deal delayed by cloudy nights.
(10.) Table showing dates of arrival at, and departure from, each station, with number of stars observed, \&c. :-

Name of Station.	Date of arrivol.	Date of commenciny observations.	Date of departuro.	No. of pairs of stars.	No. of stars obeerped.	No. of transits.	No. of micro. tanter readiugs
Shahpnor T. S., ...	3rd Dec. 1866.	6th Dec. 186G.	11th Jan. 1867.	18	40	899	3,590
Sungutpoor T. S., ...	16th Jan. 1867.	22ndJan. 1867.	19th Feb.	21	42	579	2,316
Khimonana T. S.,	23 rd Feb .	28 th Feb.	16th March.	25	50	429	1,716
Samarepoor T. S.. ..	21st March.	28th March.	11th April.	25	50	418	1,682

(15.) Table showing some of the final results obtained from the season's observations:-

Stations.			Probable errors.	Geopletic observed lntitude.	Latitudes by north stars sonth stars.	
Shahpour T. S., ...	\ldots	\ldots	$0^{\prime \prime} \cdot 13$	$+0^{\prime \prime} \cdot 06$	$+6^{\prime \prime} \cdot 17$	
Sungutpoor T. S.,	\ldots	\ldots	$0^{\prime \prime} \cdot 11$	$-0^{\prime \prime} \cdot 60$	$+5^{\prime \prime} \cdot 30$	
Khimonana T. S.,	\ldots	\ldots	$0^{\prime \prime} \cdot 11$	$+3^{\prime \prime} \cdot 35$	$+6^{\prime \prime} \cdot 24$	
Sawarepoor T. S.,	\ldots	\ldots	$0^{\prime \prime} \cdot 12$	$+1^{4} \cdot 12$	$+7^{\prime \prime} \cdot 02$	

(16.) It will be seen from this table that there is a very marked difference between the results obtained at each station by north stars as compared with south stars; this is also the case in the observations I took at
Large value of $\mathrm{N}-\mathrm{S}$. Másuri in October last. Although this great difference evidently cancels in the pairing of north and south stars, yet it is unsatisfactory to get such a difference; more especially as the mean value of $N-S$ for eighteen stations observed at by Lieutenant Campbell, R.E., with the same iustrument was only $+0^{\prime \prime} \cdot 74$.
(17.) Now for south stars :

$$
\begin{aligned}
\text { Latitude } & =\text { declination }+ \text { zenith distance }+ \text { refraction. } \\
L & =D+Z+R .
\end{aligned}
$$

For nortl stars :

$$
L_{1}=D_{1}-\left(Z_{1}+R_{1}\right)
$$

Iu the case of the above obscrrations, the latitude from north stars being too great, and from south stars too small, it follows that declinations and refractions being correct, the zenith distances of both north and south stars are observed too small.
(I.) Suppose that the declinations, as given in the Seven-Ycar Catalogue, were all either too large or too small, then the latitudes from both north and south stars would he cither too large or too small, which is not the case in these results.
(II.) Suppose that the refractions, as calculated from Bessel's tables, were all too large: Let δc be the error of refraction,

Then

$$
\begin{aligned}
L & =D+\{Z+(R-\delta c)\} \text { for south stars. } \\
L_{1} & =D_{1}-\left\{Z_{1}+\left(R_{1}-\delta c\right)\right\} \text { for north stars. } \\
& =D_{1}-Z_{1}-R_{1}+\delta c .
\end{aligned}
$$

In this case the latitude from north stars would be too large by δc, and from south stars too small by δc.
(III.) If there be fexure in the telescope and the object end droops, then the zenith distances of both north and south stars will be read too small, or the latitude resulting from north stars would be too great, and from south stars too small.
(18.) The second supposition may perhaps account for a portion of the quantity $\mathrm{N}-\mathrm{S}$, but only for a very small portion; moreover, as Licu-

The value of $\mathbf{N}-\mathbf{S}$ not fully accounted for by the suprositions. tenant Campbell used the same refraction tables as have been employed in computing this scason's olservations, a possible error in the refractions can scarcely be considered to apply. It is difficult to imagine from whence the difference between the north and south stars can spring, more especially as each star has been observed both I.P.E. and I.P.W., and both on zeros A and B.
(19.) The country round both Shalipoor and Sungutpoor is very flat. After crossing the Sutlej below Sungutpoor the country becomes very sandy.
Couniry round the stations of oberration. Twenty miles further south sand-mounds are numerous, and the Furreed-Kot district is covered with them. They are, for the most part, not more than ten feet in height, and shift with every clange of the wind; some, however, reach twenty or thirty feet in height, and a full description of those round Khimonana has been attached to the calculations.
(20.) Khimonana is in the independent state of Furreed-Kot. There appears to be but

Furrecd-Kot territory. little cultivation carried on in the State. This is no doult partly due to the difficulty of irrigating the fields, as the water is from 100 to 150 feet below the surface, and wells are scarce. The people depend in consequence more on the autumn than on the spring crops. There are no nullals or water-courses, the sandy soil apparently absorbing all the rain-fall.
(21.) The town of Furreed-Kot is about three miles in circumference. It is surrounded by an carthen rampart and parapet. On some high ground in Town of Furreed-K.ut. the middle of the town is a citadel with high walls, badly built of mud and bricks, and within it is the rajah's palace. I found the native officials very civil in this State.
(22.) About eight miles south of Khimonana there are fewer sand-hills, and the country Country between Elimonana and Sirea. soon after becomes perfectly level, and continues so up to Sirsa.
(23.) About ten miles south of Khinomuna, at Buttinda, in the Putiala territory, there is rather a strong fort. It is built on a mound which rises from fiftecn to about thirty-five feet above the level of the country. The fort is about 100 yards square inside, the straightness of the walls being

Buttindn fort, in the Putials territory.

 broken at intervals by segmental curves, which, however, would give but a slight flanking defence. From the level of the ground within the fort retaining walls run up, and between these and the outer wall earth has been filled in, forming a rampart about thirty feet wide. From the ramparts alone a fire could be maintained, and this would be of such a phanging nature as to do but little damage. There are two gateways to the fort, one to the north, which is blocked up, the other to the cast. It would not be casy to obtain an entrance by the eastero gateway. After passing the outer gate, there is a narrow passage turning sharply to the south, which passage runs under the ramparts of the fort, and could easily be blocked up. The walls of the fort are of brick and mud, in very fair repair. The town is built on the eastern side, outside the fort, the houses being close to the fort walls. There werc about half a dozen well-mounted brass guns in the fort, field-pieces ranging from three to twelve-pounders.(24.) Sirsa S. was the fourth station originally selected for observing at, hut, while at Khimonana, I got a letter from Mr. Wood, giving a description of it. From this it appeared that the station was on a hill about sixty fret high, and three miles in circumference. As he reported
Sirsa S. rejected in faror of Saware-
poor T. S. at the same time that Sawarepoor T. S., the next station of the Serics north of Sirsa, was in a level country, I thought it best to discard Sirsi, and take observations at Sawarepore instead.
(25.) During the field season Mr. 2nd Grade Sub-Assistant J. Wood was chiefly emConstruction of obsorvatories. ployed in building the observatories. These were all of the same plan, viz, thirteen feet square, with walls about nine feet high. The referring-mark was placed either due east or west of the station, and distant from one to one and a-half miles. The collimator was always placed in the meridian, and about nine to ten feet from the vertical axis of the astronomical circle. The pillars, both for the instrument and collimator, were isolated. I need not go into any further details, the work having been carried on in strict accordance with the instructions drawn up by Mr. J. B. N. Hennessey, and forwarded with your letter No. $\frac{7}{613}$, dated 19th October 1866.
(26.) The manner in which Mr. Wood performed the work allotted to him was very creditable. The observatories were all neatly and strongly built, and the meridians accurately laid down by him. When away from me he kept the establishment which was with him in good order, Mr. 2nd Grade Sub-Assietant J. Wood. and there were, in consequence, no complaints made against the klassies by the villagers. Moreover, from the experience Mr. Wood had gained with Lieutenant W. M. Campbell, R.E., he was enabled to afford me considerable assistance in obtaining good siguals from the collimator, and referring-mark lamps, a matter of considerable difficulty to me at first.
(27.) Mr. 3rd Grade Sub-Assistant G. Belcham was chiefly employed in recording. This important part he performed with great care and attention. As a

Mr. Brd Grade Sub-Assistant G. Belehnm.
proof of it, I may mention that although the chronometer had a rate of 5^{7} per day, and long intervals often elapsed between two stars, yet Mr. Belcham did not, I think, fail in a single instance either to give me the correct setting for the instrument, or to warn me of the approach of the star. Mr. Belcham is a quick and accurate computer, and works hard. I beg to recommend him for promotion, of which he is well deserving.
(28.) The health of the Party throughout the season has been very good.

Health of the Party.
extract from the narrative report of c. lane, esq., suryeyor 3rd grade, in charge no. 3 extra party g. t. survey, no. 180 , datigd l $\mathrm{E} T H$ adgust 1867.
(2.) The main camp, left Dehra on the 27th October for Salaranpore, and Mr. Civil Assistant L. H. Clarke started on the e8th for Ladpur Great Are Station, vid Mcerut, Delhiand (ioorgaon. At Saharanpore the railway bench-mark was counected with the G. T. S. benchmark on the left bauk of the Eastern Jumna Canal in the vicinity, at the crossing of the Grand Trunk Road. The railway bench-mark at their fortieth mile was next connected with the G. T. S. bench-mark at Scrsawa, on the road to Umballa. Arriving at that station, some delay was experienced in procuring the necessary information from the railway district engineer, who way out in the district, during which while every search was made for the G. T. S. bench-mark embedded in the station church compound, but without success. At Umballa the railway benchmark near the sudder bazar was connected with the G. T. S. bench-niark on the third step if the church. After this, leaving the camp to march to Ferozepore, I proceeded by dâk for the head-quarters of the Baree Doab Canal at Lahore, vid Loodianah, at which place I had search made for the ($\mathrm{I} . \mathrm{T} . \mathrm{S}$. bench-mark, and fortunately it was discovered, and the fact announced tos Major Crofton, Under-Secretary to Punjab Government Irrigation Works. Brick masonry pillars were also constructed along the road to Umballa to indiente sites of G. T. S. benchmarks. At Lahore I found the canal officers lad left for their respective districts. I, bowever, obtained a rough trace of some points of the Baree Doab Canal, in the vicinity of the Graml Trunk Road from Ferozepore, for connection with our line of levels, and also a chart of trial levels for the Sutlej Canal from Roopur to Daoraha-ke-Serai. After this I returned by dak to Ferozepore, and thence, with the aid of Ramchand, leveler, carricd a double line of levels t, Lahore, connecting en route three of the Baree Doab Canal bridges and a number of pucka points, and fixing a bench-mark at Anarkalli near mile-stone 316 Delhi, 49 Ferozepore, 1 Lahore, and another bench-mark close to the west side-wall of the railway station-house, on which wall, alongside, the letters $\frac{\text { G.T.S. }}{\text { B.M. }}$ wcre engraved, with the consent and ussistance of the railway district engineer.
(4.) From Lahore railwny station the double line of levels was continued to the neigl houring military station of Meean Mcer, where a bench-mark was fixed in the compound of the church, subscquently to conncetion of the marble step and sill of the western doorway under the stepple towrr. It was at this stage of the operations that Ramchand, leveler, lost his life by a fall from his horse, as duly reported.
(5.) Next, exclusive of men not likely to be immediately required for Inveling, who were directed to march by donble stages, the main party proceeded by rail to Mooltan, where, after instructing and practically testing Nursing Doss, recorder, in the use of a level, a rouble line of levels was commenced from Nawnb) Wally Mahomed's bridge to the railway station-house, and along the Grand Trunk Road carricd to Khemwala T. S., vid Mozuffergurl civil station and sub-division, connecting on the way a number of pucka bridges, and other remarkable points in the Derajat.
(7.) Measures were now taken for the transfer and protection of as many tower stations as practicable, by detaching people right and left, proceeding myself to Dehra Ghazre Khan, a centrical position, in order to facilitate, through the civil authorities, direct and watch proceedings for awhile, taking also the opportunity of searching out the G. T. S. bencli-mark at the station, it being much wanted for connection and correction of levels of the irrigation canals of the Indus. The bench-mark was discovered, and a brick masonry pillar built to indicate the site.
(8.) After this, on the 2nd Λ pril, the main party returned, as on the last occasion, chiefly by rail, only a few men accompanying the camels by double stages to Jahore. Here a second time I endeavoured, with the view to connection with our bench-mark, to obtain information
regarding the levels of the proposed railway to Peshawur. Colonel MacLagan, Secretary to the Punjab Government D. P. W., was also kind enough to try to obtain the information for me, but without success, the railway engineer having gone off with all his papers, to lay them before the authorities in England. Delay was likewise experienced in obtaining the corrected and attested chart of the line of railway between Umballa and Delhi from the railway authorities at Lahore. I also obtained from Major Gulliver, R.E., Superintendent Baree Doab Canal, at Lahore, in the absence from the station of Major Crofton, R.E., the promise, there being no duplicates, and the originals being required by the canal officers, to get copies made for us of the charts of the Baree Doab Canal, exlibiting level values similar to the plans of the Ganges Canal, for incorporation in the general charts of levels in preparation in your office for publication. During this while advautage was taken to connect with our bench-mark at Lahore railway station the Delhi Gate present sill, with the view to determination of the original datum of the Punjab Railway. Particulars of the result were duly communicated.
(9.) On the 17 th and 18th April the main camp proceeded, partly by rail, and partly by stages, to U'mritsur, where again I cndeavoured to obtain clarts with numerical values of levels, but with the same result, a promise to be supplied with copies, there being none available. From this place the camp marched by regular stages through the stream of Hurdwar pilgrims, including the retinue of His Highness the Maharaja of Cashmere, and their numerous doolies, amidst the sick of cholera, the dead and the dying, till the party reached Loodianah, from whence the road was pretty clear to Umballa. By adopting prophylactic measures, no case of cholera cecurred in camp, although it was prevalent in the station of Umballa, till the arrival of a camp follower from Debra Doon, where the disease had also been raging. The first case now occurred in camp, was cured, and was quickly succeeded by others, so that in two or three days there were two cart-loads of sick men. Out of some fourteen cases of cholera I lost only one, and that I believe to hare been, in a great measure, attributable to delay on the part of one of the men in giving information.
(10.) The main party reached Delhi on the 19th May, where two bench-marks of the Western Jumna Canal, a D.P.W. bench-mark of the city drainage levels, the East India Railway station-house, and the railway girder bridge were determined. Next, two bench-marks of the Eastern Jumna Canal, on the left bank of the Jumna, and after that the East India and the Delhi Railway statious at Gazecalad were connected. Then Moradnugger Ganges Canal bridge, as well as a great number of pucka points all along the line up to Meerut church were determined. At Meerut the Delhi Railway station-house rails and platform were also connected, and the whole line of levels from Delhi referred to the cross-mark cut by Captain Branfill on the surface of the stone slab opposite the north pillar of the central west doormay of the station church.
(11.) When the main camp reached Delhi it was already too late in the season for further field operations, but as you had expressed a wish for this work, and the officers of the Baree Doab Canal were also very anxious for our valucs of the termini of the Eastern and Western Jumna Canals, to check their levels, I resolved to accomplish it, despite all impediments and delays which were to be expected, and which were experienced from hot winds, dust gales, storms, and rain.
(12.) Mr. Civil Assistant L. H. Clarke passed through Delhi on the 22nd May, en route to Dehra Doon, which place he reached on the 8th June, and the main camp arrived on the 7 th July.
(13.) The following is a summary of work performed :-

156 miles 28 chains of double leveling, embracing determination of 329 puckn points, and including crossing of the rivers Sutlej and Chenab.
4 (r. T. S. bench-marks embedded, viz., one at Anarkalli, another at Lahore railway station-house, a thicrl at Mecan Mcer, and a fourth at Mooltan.
14 pillars constructed, to indicate sitcs of G. T. S. bench-marks.
70 tower stations of the Great Indus Scrics and Sutlej Serics repaired, protected, and transferred to the charge of village authorities; and
25 Great Arc platform stations
extract from the narrative report of captain J. p. baseti, r.e., surveyor lst grade g. t. survey, in charge no. 4 extma ratty, no. 113 , datied l8th SEltemider 1867.
(2.) My arrangements for the field season were the same as for the previous one, Mr. W. M. Lemarchand, 3rd Grade Sub-Assistant, procceding in advance to prepare the observaz tories, and my other Assistant, Mr. J. W. Macdougall, 3rd Grade Sub-Assistant, remaining with me to record and assist in current office duties.
(3.) During October and November I was employed in taking pendulum observations at the Mussoorie Observatory ; I also compared my thermometers with the new Indian standard, No. 4142, and determined again their freezing-points. In this Mr. Hennesscy kindly assisted me.
(4.) Whilst these operations wore going on, an apparatus was constiucted in the Deyralı workshops for determining the factors of expansion of the pendulums by direct micrometric measurements. It had been my original intention to take these experiments in the Mussooric Observatory, which, having double doors and windows, was admirably adapted to the purpose; but the apparatus as first constructed proved defective, so I moved down to Deyrah, partly on account of the lateness of the season, and partly to supcrintend the re-construction of the apparatus. These experiments, which will form the subject of a scparate report, were made eventually in an outer godown of the old Survey Office at Deyrah, the same one in which I took pendulum observations. They were completed only in time for me to take the field on the 12th of January. I would here express my obligations to Mr. Hennessey, who lent me most valuable assistance in everything connected with these experiments, devoting much of his time to devis, ing and superintending the construction of the apparatus, and afterwards taking one of the microscopes in the measurement.
(5.) At Deyrah, and on my march down, at Meerut and Agra, and afterwards at Pahargarh, Kalianpúr and Elımadpúr, whilst tuking pendulum observations, I took a complete set of magnetic observations for dip, declimation and total force. In determinisg the declination at the first two stations I used the transit mirror, but at the other stations I always employed a referring-mark. The results by the latter method are by far the most accordant.
(6.) I commenced pendulum observations at Pahargarh H.S. on the 2-fth February, and completed Ehmadpúr H.S., the third and last station, on the 25th April; I then proceeded by Hoosungabad to Chiculdah, for the recess, arriving there on the 20th May.
(7.) Mr. W. M. Lemarchand repaired the Pahargarh observatory, which had suffered from the rains during the last recess. He then built the Ehmadpúr observatory', making a survey of the hill during the building, and completed an observatory in advance at Budgaon, about twelve miles south of lhudnaira. He did not come in from the field until the 21 st of Junc. The out-turn of work is small, but it must be remembered that of the cight months he was in the field, over threc were taken up in marching alone; he was also much delayed over the Budgaon observatory, on account of the frec-labor system of the district, finding it difficult to procure any labor at all, or only at exorbitant rates. I may mention that the Budgaon observatory cost lls. 5ll-2, and occupied Mr. Lemarchand two months in the building, whereas the one at Emadpúr, the most expensive one hitherto, cost but Rs. $155-4$, and was built in half the time. I consider that Mr. Lemarchand's season's work, under the cireumstances, is satisfactory.
(8.) Mr. J. W. Macdougall assisted me in recording the pendulum and magnetic observations, and, with me, brought up a great deal of the computations in camp. He has given me entire satisfaction in everything that he has had to do. I have alrcady reported to you very favorably of him.
(9.) I will now detail the observations and method of observations at cach station:

Mussoorif.-There were two series of observations taken at this station, one hot and the other cold, each consisting of twelve sets with each pendulum, six sets face M. (maker's name) to front, and six sets face P. (plain) to front. Each series was taken at the natural pressure of the atmosphere in the vacuum cylinder, and lasted nearly three hours. The first three and last three and two intermediate coincidences were observed. In the hot series the chinks in the doors and windows were pasted up with paper, each door was further protected by a purdal. The clock and apparatus were erceted, the clock started, and the room was then raised to the required temperature by means of a charcoal stove. The pendulums were kcpt in the room, so that they acquired the high temperature gradually at the same time as the room, and observations were not commenced until the temperature of the room had stood over 80° for several days. The pendulums were swung in order, first No. 4, and then No. 1821. The clock used was a mean-time one by Jones, belonging to the Survey, as the clock Shelton, belonging to the apparatus, was under repair. Transits were taken every night to a sidereal chronometer, Frodsham, No. 3,379, which was compared with the clock immediately before and after the transits. The hot series was commenced on the 2nd October, and completed on the 10th October. The temperature was very constant, never falling below 81°, nor rising above 87°. The hot series concluded, the doors and wiudows were all thrown open, and the room allowed to assume the natural temperature, but observations were not commenced until the lst of November, in order to get as low a temperature as possible. Observations were commenced with No. 1821 Pendulum, and No. 4 Pendulum was completed on the 10th November, the temperature rangiug from 51° to 58°. Clock Shelton was used for the transits in this series, being compared directly with clock Jones immediately before and after the transits. From these observations I have computed the temperature coefficients of the pendulums, that is to say, the variation in the number of vibrations made in one mean solar day due to an increment or decrement of l° Falurenheit. The values are-
$\left.\begin{array}{llll}\text { No. } & \text { 4 Pendulum } & 0 \cdot 420 \\ \text { No. } 1821 & \pm & 0035 \\ \text { do. } & 0 \cdot 441 \\ \pm\end{array}\right\}$ Mean Pressure 23.5 inches.
The values obtained at Kaliana (recomputed) are-

From General Sabine's observations with No. 4 Pendulum at London in 1824, which I have recomputed in part, using the Kew coefficient for reduction to a vacuum, I obtain for

No. 4 Pendulum 0.428 \pm 0007, Mean Pressure $29 \cdot 8$ inches.
From an examination of these quantities it appears that both pendulums follow the same law: in both the coefficient at the low pressure is the largest, and in both the coefficient at the full pressure of near thirty inches is nearly the same as at the Mussoorie pressure of 23.5 inclies. This agreement can, I think, be hardly accidental. The results of the Mussoorie observations reduced to vacuo, to mean temperature 72°, and approximately to mean sea-level, are-

(10.) Pahargarh H.S.-The observations here were conducted in the same way as last season, with the exception that six scts only were taken with each pendulum instead of ten. Transit olscrvations were taken both in the evening and morning to a mean-time chronometer (Dent No. 2,730), which was compared with the pendulum clock before and after the transits. The mean number of vibrations in vacuo at mean sea-level reduced to 72° l'ahrenheit are-

$$
\begin{array}{lc}
\text { No. } 4 & \text { Pendulum } \\
\text { No. } 1821 & \text { do. } 060 \cdot 744 \\
\text { do. } & 85,960 \cdot 413
\end{array}{ }^{\circ} \cdot 079
$$

The probable error of a star's transit over a single wire was ± 0.090, so that the probable error of the clock's rate deduced from four stars (the average number taken each evening and moruing) $= \pm 028$

The Pahargarh observatory was built over the Trigonometrical station. The hill is low and flat-topped, rising less than 100 feet above the general level of the country. The soil is a dense sandstone.
(11.) Kalianpur.-The observations were taken in the room adjoining the astronomical observatory built by Sir George Everest for an office. It is in excellent preservation. It is built of finely-dressed stone, the beams of the roof are of stone, and the roof itself of large flat stones laid in cement, the floor also is paved with stones. The same number of observations were taken here as at Pahargarh, and transits were taken both evening and morning. The results reduced to vacuo, to mean sea-level, and to 72° Fahrenheit are-

$$
\begin{aligned}
& \text { No. } 4 \text { Pendulum } \\
& \text { No. } 186060 \cdot 389 \\
& \text { do. } \\
& \hline 85960 \cdot 187 \\
& \pm
\end{aligned} \cdot 058
$$

The probable error of a star's transit over a single wire was $\pm{ }^{\circ} 077$, and of the clock's rate from four stars ± 024.

Kalianpúr is situated on undulating ground near the edge of the ridge bounding the Sironj valley, which is about 200 feet lower. The soil is, I believe, laterite.
(12.) Ehmadpur is on a low isolated hill elevated about 260 feet above the general level of the country. The soil is a hard sandstone. A rough survey of the hill was made by Mr. Lemarchand, which afforded data for computing with sufficient approximation the effect of the hill on the vibrations of the pendulum. The results at this station are reduced as before :

$$
\begin{array}{llll}
\text { No. 4 Pendulum } & 86058 \cdot 400 & \pm .018 \\
\text { No. } 1821 & \text { do. } & 85957 \cdot 574 & \pm 066 .
\end{array}
$$

The probable error of a star's transit over a single wire $\pm \circ 072$, and of the clock's rate deduced from six stars $\pm{ }^{\circ} 019$.

The observatory was not built over the Trigonometrical station, but a short distance east of it , and on ground about tweuty feet lower.
(13.) The results of the past season's operations are all reduced to vacuo, to mean sea level, and to 72° Fahrenheit. This mean temperature was taken simply on account of its bcing almost exactly the mean temperature of all the stations observed at in India, but I would suggest that it be now adhered to as a standard temperature.
(14.) These results cannot be considered final, there being still an uncertainty about the temperature and pressure coefficients. The temperature coefficient determined at Kaliana, and which bas been used throughout these reductions, will be found, I believe, eventually to be too large. Several circumstances point this out, amongst them I may mention that last year's work was all approximately computed with an assumed coefficient, $0 \cdot 435$ for 1° Fahrenheit, and the probable errors are in almost every case smaller with this coefficient than with the Kaliana one. I consider that the pressure and temperature coefficients should be determined simultancously, ly taking at least four series of observations, two at low pressure and extremes of temperature, and two at high pressurc and extremes of temperature. The value of such observations would be greatly increased by introducing two more sets taken at an intermediate pressure. By building an observatory for the express purpose in some suitable locality, where a low natural temperature can be obtained, such experiments might be still further extended without excceding the limit of an ordinary field scason. A small constant correction will have to be applied eventually on account of a thermometer reading less in vacuo than in air, owing to the removal of the atmospheric pressure. I have been taking experiments at Chikulda, for the purpose of determining this correction; it apparently will not exceed two-tenths of a degree.
extract from the narrative report of j. b. n. hennessey, esq., stryeyor lst gradg g. t. survey, in charge computing office, dated lst may 1867.
(1.) Calculating Branch.-On 31st August 1866, Mr. Lane was removed to the charge of the Leveling Party, giving place to Licutenant M. W. Rogers, R.E. The latter gentleman has accordingly acted as my assistant for the chief portion of the past year. Lieutenant H . 'Trotter, R.E., worked under my directions for a couple of months, with the object of acquiring a more intimate acquaintance with the processes and calculations of the Survey Department. He was successful in his studies, and I have little doubt that he will prove equally successfil in the discharge of any professional duties that may be assigned to him. Lieutenant W. H. Collins, R.E., also did duty with me for some time last winter. The state of his health, consequent on the terrible physical damages he received in the Bhootan campaign, made it essential that he should return to England, and the Computing Office accordingly lost his services. Five of the uative computers were induced to leave the office, as they gave no promise of qualifying for an efficient discharge of their duties.
(2.) Printing Branch.-This department has undergone no sensible change in establish. ment.
(3.) Photozincographic Branch.-The duties of this branch were conducted by Captain H. H. Godwin-Austen up to the 27th July, when he gave place to Lieutenant J. Waterhouse, R.A. The latter gentleman joined the office for the purpose of becoming acquainted with the process of photozincography, and when duly qualified, he was removed to the charge of the similar office in the Surveyor General's Department at Calcutta. Mr. W. H. Cole, M.A., succeeded Lieutenant Waterhouse on 3rd January, and has continued to conduct the duties of the establishment. This appears a suitable place to notice that Captain A. B. Melville was also instructed in the process last winter, and became well acquainted with it in due course. He was thus able to relieve Lieutenent Waterhouse of the Surveyor General's Department at Calcutta, when the latter gentleman was obliged to proceed to England on medical certificate. Four officers have thus already been instructed in the process at your Dehra Office. The three presses in this branch are now all at work. Two are employed for printing purposes, while the third is unavoidably reserved for chromo-carbon transfers.
(4.) Calculating Branch.-The following table exhibits the amount of ordinary calculaProgrese. tions, and other work performed :-

Subject.	Quantity.
Numbered pages and indexed,	177 volumes of angle books.
Micrometer readings, copied,	1020 openings of an angle book.
Do., compared,	1281 do.
Do., examined (special),	145 do.
Mean readings, examined or computed,	1684 do.
Do., compared,	1642 do.
Angles, examined or computed,	1875 do.
Do., compared, $\quad .$.	1198 do.
$\begin{gathered}\text { General means and level corrections (of vertical angle } \\ \text { book) examined or computed, }\end{gathered} \quad .$.	312 openings.
Do. do., compared,	754 do.
Abstracted observed angles, ..	203 angles.
Computed weights of observed angles,	205 do.
Made synopsis of results of above,	29 do.
Computed spherical excesses, ..	84 triangles.
Computed principal triangles,	267 do.
Extended computation of principal triangles to 8th place of loga.,	$\{347$ do.

Subject.	Quantity.
Computed principal latitudes, longitudes and azimuths, Computed corrections to figures by the method of least squares,	$\left\{\begin{array}{c} 164 \text { double deductions. } \\ 1 \text { quadrilateral, } \\ 5 \text { simple polygons, } \\ 7 \text { compound figures. } \end{array}\right.$
Made consistent to 5 in the eighth place of logs., figures already reduced,	$\left\{\begin{array}{l} 9 \text { quadrilaterals, } \\ 27 \text { simple polygons, } \\ 13 \text { compouud tigures. } \\ 36 \text { triangles, } \\ 21 \text { quadrilaterals, } \end{array}\right.$
Computed weights of sides of continuation,	$\left\{\begin{array}{l} 39 \text { simple polygons, } \\ 18 \text { compound figures, } \\ 5 \text { do. partially computed. } \end{array}\right.$
Computed the observed latitude at,	10 stations.
Number of observations reduced in above,	1810 observations.

(5.) There are also the following ordinary duties to notice :-The compilation of "copy" for the press, and the daily careful examination of proofs. These duties have been carried on as usual, so that 476 pages of the book on the North-West Quadrilateral were printed in 1866; 67 ; and as 215 pages of this volume were printed in 1865-66, there remain 66 pages more to complete the subjects of "Alphabetical Lists," "Numerical Lists," " Descriptions of Principal Stations," and "Observed Angles." The preparation of lists of all the principal stations o the Great Trigonometrical Survey for the civil authorities, with the object of transferring these stations to their care, required a considerable amount of time and labor. The larger portion of these lists stands disposed of.
(6.) I had the pleasure last winter of assisting Captain J. P. Basevi, R.E., in determining the coefficients of expansion of the two brass pendulums with which he is conducting the pendulum experiments. The resulting equations were reduced in the Computing Office, by the method of least squares.
(9.) I next turn to the comparisons of thermometers and of standard bars. To admit of the linear standards being compared, it first became necessary to compare our thermometers, since the working thermometers, which Captain A. R. Clarke, R.E., of the Ordnance Survey, was good enough to compare for us, were broken almost without exception on their way from England to your head-quarters. These experiments were duly made by Lieutenant Rogers and myself.
(10.) We were thus enabled to compare the following ten-foot standards :-

Bronze Bar, or I_{B},
Steel Bar, or I_{s},
G. T. Survey Iron Bar, or A,
with one another. The observers in this case were-The Superintendent of the Great Trigonometrical Survey, Captain T. G. Montgomerie, R.E., J. B. N. Hennessey, Esq., Lieutenant M. W. Rogers, R.E.
(11.) The comparisons thus made at your head-quarters, Dehra, were these :-

I_{B} with I_{s},	25 comparisons.
I_{B} with A,	.	.	$\mathbf{3 6}$
I_{S} with A,	..	.	28

whence the following statement:-
$\left.\begin{array}{rl}\left.\begin{array}{l}\mathrm{I}_{\mathrm{B}}-\mathrm{I}_{\mathrm{s},} \text { as determined at the head-quarters of the } \\ \text { Great Trigonometrical Survey, }\end{array}\right\} \quad . . & . \\ \mathrm{I}_{\mathrm{B}}-\mathrm{I}_{\mathrm{s},} \text { as determined at Southampton by Captain } \\ \text { Clarke, R.E., (see Comparisons of Standards } \\ \text { of Length, page 280, } & \text {.. }\end{array}\right\}=131 \cdot 40$ millionths of a yard.
(12.) Accepting Captain Clarke's value as a constant, in accordance with your directions, the remaining 64 equations furnish

$$
\left.\begin{array}{l}
I_{B}-A=221 \cdot 35 \text { millionths of a yard, } \\
I_{S}-A=89 \cdot 59 \text { millionths of a yard, }
\end{array}\right\} \text { (1). }
$$

(13.) Combining either numerical value from (1) with the results at page 280 of "Com. parisons of Standards of Length," it appears that $\frac{10}{3} Y_{65}-A=20.51$ millionths of a yard.
(14.) Again, by a similar process, the means of comparing the ancient and modern values of $B-A$ are obtained, where B^{*} is the 10 -foot Iron Standard of the Indian Survey deposited in England, thus, -

$$
\text { Difference }=1 \cdot 80
$$

(15.) It thus stands proved that, during the interval of 30 years, the difference $B-A$ has not altered seusibly, and this is all the more satisfactory, since A has been carried over full ten thousand miles of land, besides the voyage to India, and that from Calcutta to Vizagapatam; while B has sailed twice round the Cape to and from India, and has also been taken from England to Russia, and back home.
(16.) Miscellaneous Duties.-The following are some of the duties which fall under this denomination :-The list of points on the Himalaya mountains, more than 16,000 feet above sea level, was completed by Mr. Lane, and he was subsequently employed in reducing certain levels of the Ganges Canal to Great Trigonometrical Survey datum. Lieutenant W. J. Heaviside, R.E., was instructed in the use of the astronomical circle, and a paper of directions on the subject was prepared for his use. The field books of the Trans-Himalayan explorers were translated into English. Their observed latitudes and the heights from their readings of the boiling point of a thermometer computed. Their traverses were also projected by themselves, under my direction. A new edition of the Geodetical Tables is in course of preparation. All the old auxiliary tables have been extended from 8° to 5° of latitude, so as to include Ceylon; and, in accordance with your wishes, certain new tables are being constructed, which will cnhance the utility of the compilation. A list of stars observed on the Great Arc was drawn up for the Astronomer Royal, to admit of special observations being taken at Greenwich for the more accurate determination of their places. Colonel Lambton's papers were arranged and indexed. Directions for taking tidal observations were prepared for Mr. Rossenrode. A quadrangular library shelf, as well as a trough for comparing thermometers, and the isolated supports necessary for bar comparisons were designed and constructed. Three candidates for Sub-Assistantslips were examined in the usual subjects. The meteorological observations were taken as usual, and a copy of the readings supplied to the Reporter on Meteorology N. W Provinces, \&c., \&c.
(17.) Printing Branch.-This department composed 756 pages (foolscap size), and struck off $\mathbf{0 3 , 4 1 1}$ impressions. It has been provided with an Athol hot-press, as well as such descriptions of type as were necessary to increase its efficiency.
(18.) Photozincographic Branch.-The following table exhibits the work performed:-

$$
\begin{aligned}
& \text { Forms zincographed, } 34 \text { subjects, } 116 \text { pages, } \\
& \text { Charts of triangulations, skeleton maps, \&c., zincographed, } 18 \text { subjects, } \\
& \text { 2,251 do. } \\
& \text { Maps and charts photozincographed, } 15 \text { subjects, involving } 59 \text { negatives, } \\
& 4,867 \text { do. }
\end{aligned}
$$

[^1](19.) In concluding this report, I have much pleasure in acknowledging the valuable assistance I have received from Lieutenant M. W. Rogers, R.E. Very willing to work, quick and energetic, he has not only taken a leading share in designing Concluaion. and carrying out projects, but he has also acquired a sound knowledge of the ordinary departmental processes of calculation. I have every reason to hope that his experience and skill in the use of iustruments will prove exceedingly useful at the Bangalore base, on which it is your intention to employ him next winter.
(20.) I am also much obliged to Mr. Wood, and to Baboos Gunga Pershad and Dwarka Nath Dutt for their hearty co-operation in discharging the duties of the Computing Office. Baboo Cally Mohun Ghose has made considerable progress towards qualifying himself as a leading computer. Baboo Gopal Chunder Surcar continues a very steady and careful assistant. The other computers have all given me satisfaction.
(21.) In the Photozincographic branch, Mr. Ollenbach has continued to make fair progress in the process. His skill in putting together and transferring the transfers to zinc promise ere long to help in producing superior prints. This department is now quite able to print all the Departmental forms, and these will in future be prepared by the Computing Office in accordance with your wishes.
P.S.-Subsequent to the date of this report, the 6 -inch brass scales of the compensated base-line microscopes were compared with the central 6 -inch space (d. l.) on the Indian Standard steel foot.

The observers were-Captain T. G. Montgomerie, R.E., J. B. N. Hennessey, Esq., Lieutenants H. R. Thuillicr, R.E., W. J. Heaviside, R.E., M. W. Rogers, R.E., and each scale was compared 20 times with the space (d. 1.)

Reducing these observations in the usual ray, and combining our results with those given on page 280 of "Comparisons of Standards of Length," we obtain the following differences expressed in millionths of a yard:-

$$
\begin{aligned}
\frac{A}{20}-M=-4.56 & \frac{A}{20}-T=+1.04 \\
\frac{A}{20}-N=-13.00 & \frac{A}{20}-U=-11.05 \\
\frac{A}{20}-R=-9.46 & \frac{A}{20}-V=+3.35 * \\
\frac{A}{20}-S=+0.57 & \frac{A}{20}-W=+0.89
\end{aligned}
$$

The value of the ninth scale is not given here, as its dots lave become seriously distorted, and you decided on using it no longer.

The relative length of the scale P, nbsent in England for repairs, to its microscope is expressed by-

$$
\frac{\mathrm{A}}{20}-\mathrm{P}=-13 \cdot 28
$$

Remarking that our 6 -inch scales have hitherto been reckoned in terms of a 6 -inch brass standard scale (the one now unserviceable), the effect of the above relations will be to increase the lengths of all our base-lines. The maximum augmentation falls to the Bider baseline, that being our longest side of verification, and herc the correction amounts to +0.51 inches.

[^2]
anndal return of wore executed in tie draming brance of the office of superintendent g. t. survey from lst may 1866, to 30th apbil 1867.

Map of Centril Asia, soale 48 miles $=1$ inob.

Sheet No. 5, or Section No. 11, Kashmir Survey, for Home Government.
Section No. 11 Kashmir Survey.
Preliminary Chart of the Jubbulpore Meridional Series, season 186465. Ditto of the East Calcutta Longitudinal Series, seasons 1862 to 1866, on transfer paper.
Chart shewing arrangements of general sheets of the Kumaon and Gurhwal Survey.
Projected Graticules and inserted details in the 6 sheets, to exhibit G. T. Survey, Railway, and Ganges Canal Leveling Operations.
Made a Tracing of the Drainge Survey of the Seyngurh and Sursoo Nuddees, continued from the Survey of 1859-60.
Made Tracings of 3 Maps, continuation of the Survey of the Etawah Terminal Branch Ganges Canal.
Completed and reduced Cawnpoor Branch Ganges Cnnal in 4 sheets from 1 to 2 miles $=1$ inch. Ditto Futtygurh ditto 6 maps ditto. Ditto Cross Section left main Rujbuha to the Kalee Nuddee Cawnpore Branch. Ditto Line of Levels from Roorkee Bridge to Dadoopoor Escape Dam. Ditto Map of the Koel Branch, No. 26. Ditto Map of the Etawah Branch, No. 15.
Reduced Skeleton Map of Cross Section between Dasna and Jewur. Ditto ditto between Jewur and Reyah.
Reduced to one-Gifth Plan of the Contour Survey or Levels N. and S. of the Gonges Canal.
Reduced Map of the Drinage Survey of the Seyngurh and Sursoo Nuddees, continued from tho Survey of 1859-60.
Reduced 3 Maps, continuation of the Survey of the Etawah Terminal Branch Ganges Canal.
Reduced Ronte Map of Lhasa.
Map of the Ganges and Jumna Donb, showing the line of levels taken in 1864 (in 2 sheets).
Prepared na Extruct from the N.-W. Himnlaya Survey, between lat. $30^{\circ} 5^{\prime}$ and $31^{\circ} 55^{\prime}$, and long. $77^{\circ} 45^{\prime}$ and $77^{\circ} 55^{\prime}$.
Projected Graticule, and inserted details in Mnp of Dehra Doon, scale 2 miles $=1 \mathrm{inch}$.
Completed Shect No. 8, or Section No. 14, Kashmir Survey, for Home Government.
Completed an Index to the G. T. Survey, up to 1st May 1866.
Preliminary Chart of the Eastern Frontier Series, season 1.S64-65. Ditto ditto, 1865-66.
No. 1 Preliminary Chart of the Revised Calcutta Longitudinal Series, season 1863-64.
No. 2 Ditto ditto, 1864-65.
Preliminary Chart of the Kumaon and Gurhwal'Serics, sensons 1864-65.66.
Sheet No. 7, part of British Gurhwal, senson 1865-66, bcale 1 mile $=1$ inch.
Sheet No. 1, Ditto, 1864-65, ditto.
Skeleton Sheot No. 7, part of British Gurhwal, season 1865-66. Ditto No. 1, Ditto, 1864.65.
Sheet No. 9 Mussoorie and Landour, season 1865-66, scale 12 inches $=1$ mile.
Skeleton Shect No. 9, Ditto, ditto, on transfer paper. Ditto No.7, Ditto, ditto, ditto.
Preliminary Chart of portions of the Bombay Longitudinal and Mangalore Meridional Seriee, seasons 1862-63-64-65.
Ditto of the Madras Meridional Series, senson 1864-65, on transfer paper.
Colored 505 copies of Maps.
dc., \&c., dc.

巴円ア○尺T

on

THE TRANS－HIMALAYAN EXPLORATIONS，

IN CONNECTION WITH TIIE
great trigonometrical survey of india，

DURING 1865－67．

DRAWN UP BY
Captain T．（y．MONTGOMERIE，R．E．，

IN CHADGE OF THE TRANS－HIMALAYAN SURVEY PARTIES．

NARRATIVE REPORT OF A ROUTE-SURVEV MADE BY PUNDIT *__ FROM NEPAL TO
 LHASA, AND THENCE THROUGH THE UPPRR VALLEY OF THE BRAHMAPUTRA TO $1 T S$
 SOURCE, DRAWN UP BY CAPTAIN T. G. MONTGOMERIE, R.E., OF THE G. T.
 SURVEY, IN CHARGE OF THE TRANS-HIMALAYAN SURVEI PARTIES.

Exploration beyond the frontiers of British India has, for many years, made but little comparative progress, and (as far as Europcans have been concerned) has been confined to points not many marches beyond the border.
A. European, even if disguised, attracts attention when travelling among Asiatics, and his presence, if detected, is now-a-days often apt to lead to outrage. The difficulty of redressing such outrages, and various other causes, has, for the present, all but put a stop to exploration by Europeans. . On the other hand, Asiatics, the subjects of the British Government, are known to travel freely without molestation in countries far beyond the British frontier; they constantly pass to and fro between India and Central Asia, and also between India and Tibet, for trading and other purposes, without exciting any suspicion.

In 1861 it was consequently proposed to take advantage of this facility possessed by Asiatics, and to employ them on explorations beyond the frontier. The Government of India approved of the project, and agreed to support it liberally.

With a view to carry out the above, Colonel Walker, the Superintendent G. T. Survey, engaged two Pundits, British subjects, from one of the upper vallics of the Himalayas. These men were recommended by Major Smyth, of the Educational Department, as likely to have great facility in travelling through various parts of Tibet, their countrymen having always been granted by the Chinese authorities the privilege of travelling and trading in Nari-Khorsum, the upper basin of the Sutlej. Such promising recruits having been secured, they were at once sent to the Head-Quarters of the G. T. Survey, in order to be trained for Trans-Himalayan exploration.

On Colonel Walker's departure for Fingland, these Pundits were put under Captain Montgomerie, who completed their training. They were found to be very intelligent, and rapidly learnt the use of the sextant, compass, \&c., and before long recognized all the larger stars without any difficulty. Their work, from actual practice, having been found to be satisfactory, Captain Montgomeric directed them \dagger to make a route-survey from the Mansarowar lake to Lhasa, along the great road that was known to exist between Gartokh and Lhasa. From Lhasa, they were directed to return by a more northerly route to Mansarowar. The route to Lhasa was selected by Captain Montgomerie, because it was known, from uative information, to be practicable as far as the road itself was concerned. If explored, it was likely to define the Whole course of the great river known to flow from near the Mansarowar lake to beyoud Lhasa. Hitherto the sole point on the upper course of this great river, the position of which was known with any certainty, was a point near 'Teshooloomboo, or Shigátze, as determ:ned by Captain Turner iu 1783. The position of Lhasa, the capital of Great Tibet, was, moreover, only a matter of guess, the most probable determination having been derived from native information as to the marches between Turner's Teshooloomboo and Ihasa. In fact, the route from the Mansarowar lake to Lhasa, an estimated distance of 7 or 800 miles, was alone a capital field for exploration.

An attempt was made by the Pundits to advance dircet from Kumnon, vid Mansarowar, to Lhasa, but they did not find it practicable. Whilst in Kumaon, they came across some British subjects, Hhotiyas, who had been robbed whilst trading in the Chinese territories, near Gartokh.

[^3]These Bhotiyas thought that, if the matter was properly represented, they might get redress from the Lhasa Government, and hearing that the Pundits were going to Lhasa, asked them to be their agents (rakeels), in order to recover what they could. The Pundits consented, and one of them returned to Captain Montgomeric for fresh instructions. The attempt by the Mansarowar lake having failed, it appeared to Captain Montgomerie that the best chance of reaching Lhasa would be through Nepal, as the Nepalese Government has always maintained relations of some kind with the Government of Lhasa. Traders from Nepal, moreover, were known to risit Lhasa, and Lhasi traders to visit Nepal.

Captain Montgomerie thought that the wish to recover money for the Bhotiyas of Kumaon would afford a plausible excuse for the Pundit's journey to Lhasa, an cxcuse the Nepalese would thorouglly understand, and he trusted the frequent intercourse with Lhasa would eventually afford the Pundits a good opportunity of travelling to that place in company with traders or others.

The Pundits were consequently ordered to go to Kinthmandû, and from thence to try and make their way to the great road between the Mansarowar and Lhasa. Their instruniental equipment consisted of 2 large sextants*, 2 box sextants, prismatic and pocket compasses, thermometers for observing temperature of air and of boiling water, pocket chronometer, aud common watch, with apparatus, the latter reduced as much as possible.

The Pundits started from Delira, reached Moralabad on the 12th January, nnd Barcilly on the 23 rd January 1865. At Bareilly they took latitude observations, and commenced their routc-surver. They crossed the Nepalese fronticr at Nepalgminj, Jung Bahadur's new town, aud from thence went by the Cheesaghurri road to Kathmandû, reaching the latter place on the \bar{z} th March 1865.

In Kathmandû they made inquiries on all sides as to the best route to Lhasa; they found that the direct one by Kûti (or Nilum), across the Dingri plain, (or Tingri Maidan, as it is called), was likely to be very difficult, if not impassable, owing to the snow at that early season (March, April). They consequently iletermined to try the route by Kirong, a small town in the Lhasa territory, as that route was said to be passable carlier than the Kûti route. Having made their arrangements, the Pundits started full of hope on the 20th March 1865, accompanied by 4 men, whom they had hired as servants.

On the 26th they reached Medangnodo village, and here they changed their mode of dress to one better known to the people of Lhasa. They also gave out that they were Bisahirist, and were going to buy horses, at the same time to do homage at the Lhasa shrine. The character of Bisahiris was assumed, becanse they knew that those people had from time immemorial been privilcged to travel in the Lhasa territory without question. On the 28tlı March they reached the neighbourhood of Kirong, but, much to their disappointment, they were stopped by the Chinese officials, who questioned them as to the object of their journey, and scarched their laggage. Portunately the instruments (which had been ingeniously secreted in a falsc compartment of a box) escaped detcetion; but still, though nothing suspicious was secm, the plansible reasons given for the journey did not satisfy the jealonsy of the Chinese authorities. In spite of everything urged, they were not allowed to pass until a reference had been made to the Kirong governor. The Kirong governor seems at once to have noted the weak points ol their story, and laving pointed them out with inexorable logic, declined to let them pass on any consideration ; they were thercfore reluctantly forced to retrace their steps to Shabrû. At Shabrû the wily l'undit managed to persuade a high official that they were no impostors, and induced lim, moreover, to certify that in a leter to the Kirong governor. Armed with this letter, they returned towards Kirong, with hopes of better luck, and no doubt under ordinary circumstances, would have succeeded; but on the road they fortunately discovered that the Kirong governor was an individual who had known the Puudit's brother personally, when he was clief of

[^4]Taglakote near Mansarowar ; his lrother had in fact been frequently in close and friendly relations with him. 'lhis at once put a stop to all hopes of his advancing by the Kirong route, as the governor well knew he was no Bisahiri. The other Pundit thought of proceeding by himsclf, lont, being able to devise no feasible method, he gave up the idea, and the party consequently marched back, reaching Kathmandû on the 10th April. Here they made fresh inquirics as to some more promising way of getting to Lhasa. At last they heard of two opportunities, the first by accompanying the camp of a new agent (vakeel) that Jung Bahadur was about to send to Lhasa, and the second by accompanying a bhot merchant. In order to increase their chances of success, they decided that one should go with the Nepal agent, and the other with the merchant. The vakeel at first agreed to take one of them with him, but ultimately refused.

Failing with the vakecl, it was impossible for the Pundit, who was known to the Kirong governor, to go with the Bhot merchant, as he intended to take the Kirong route; he consequently decided to try a more circuitous route, by Muktináth, but in this he failed, owing, according to his own account, to loss of health, and the unsafe state of the roads, but, no doubt, in a great reasure due to his own want of determination. After a long journey through the upper parts of the Nepal territory, he returned to British territory. 'Ithe account of his prececlings is referred to separately. The other Pundit, at first, was not much more successful with the merchant than his brother had been with the vakeel. The merchant, Dawa Nangal, promiscd to take the Pundit to Llasa, and on the strength of that proceeded to borrow money from him. The merchaut, however, put off starting from day to day, and eventually the Pundit had to start with one of the merchant's servants, the merchant himself promising to follow in a few days. The Pundit assumed the dress of a Ladáki, and, to complete his disguise, added a pig-tail to his head. This change was made, because he was afruid that the Kirong officials, who stopped him the first time, might recognise lim again.

Starting on the 3rd June with one servant and Dawa Nangal's man, he reached Shabrî on the 20th of June, having been delayed six days by a bad attack of fever. At Slabrû lie was kindly received by Dawa Nangal's family, but Dawa Nangal himself never made his appearaner, and it became evident that he did not intend to keep his promise. In his perplexity the Pundit appealed to Dawa Nangal's uncle, and told him how he had been treated. The uncle, a man of some nuthority, said he sympathized with him, and gave him a pass to Kirong, and a letter to Dawa Nangal's brother, who had just returned to Kirong from Lhasa. In the letter he mentioned that the Pundit's claim against Dawa Nangal was just, and, in consequence, requested him to arrange for the Pundit's journey to Llasa, and, if necessary, to staud security for him.

Starting on the 6th July with one of the uncle's servants, the Pundit managed to make his way into Kirong. Here he found Dawa Nangal's brother, by name Chúng Chú. Chúng Chú, on hearing the state of the case, promised to assist the Pundit ou to Lhasa, but refused to pay his brother's debt. Chúng Chí proved himself a better man than his brother, for, though permission to travel by the direct route was refused, he ultimately succeeded in getting the Pundit permission to travel onwards; by this means he reached Tadúm monastery, a well-known halting place on the great road between Lhasa and Gartokh. Starting on the 13th August from Kirong, he reached Lue on the 23rd. From Kathmandû up to this point vegetation and jungle: had been abundant, but, beyond, the mountains were throughout bare, and all but barren.

On the 24th August the Pumlit joined a large trading party, travelling vid Tadún to Mansarowar, and was allowed to accompany them. On the 30th he reached Talla Labrong, and there first canght sight of the great river* that flows towards Lhasa. His first acquaintance with this river was calculated to inspire him with respect for it, as three men were drowned in front of him, by the swamping of a ferry boat. Alarmed by this occurrence, the party marelied a sloort distance farther up the river to a better ferry, by which they crossed in safety to the 'Tadún monastery on the 6th of September. At Tadúm the Puudit feigned sickness, as a reason fin not going on to Mansarowar, and he was accordingly left behind. Continuing to feigu illness, lar
at last found an admirable opportunity of going to Lhasa, viz., by accompanying a Ladák merchant in the employ of the Kashmir Maharaja, who was that year going to Lhasa, and was to pass through Tadúm. On the 2ad of October the merchant's head man, Chiring Nirpal, arrived, and on hearing the Pundit's story, at once consented to take him on to Lhasa. Starting on the nest morning with the Ladaki camp, he marched eastwards along the great road, reaching the tow of Sarkajong on the 8th October. So far everything had gone smoothly, but here the inguiries made by the authorities rather alarmed the Pundit, and as his funds, owing to the great delays, had begun to run short, the two combined made him very uncasy. However, he manfully resolved to continue his joumey. He became a great favorite with Chiring Nirpal and the whole of the Ladáki camp. On the 19th October they reached Ralang. From 'Tadúm to this point no cultivation was seen, but here there was a little, and a few willow trees, and onwards to Lhasa cultivation was met with nearly every day.

On the 22ad October the party reached the town of Janglache, with a fort and fine monastery on the Nárichú*, the great river first met with near Talla Labrong. From this point people and goods are frequently transported by boats to Shigatze, 5 days march (85 niles) lower down the river. Most of the luadit's companions went by boat, but he haviug to survey, count paces, \&c., went by land. On the 29th October they reached Digarcha, or Shigátze, a large town on the Penanaugehú river near its junction with the great Nárichú river. At Shigátze, Chirung Nirpal had to wait for his master, the head merchant, called Lopchak. The P'undit consequently remained in that town till the 22 nd of Decenber. The Lopchak, who arrived on the 16 th November, saw no objection to the Pundit continuing with the party, and, morcover, promised to assist lim at Lhasa. Whilst at Shigátze the Pundit aud lis companious remained in a large sort of caravanserai called Kunkhang. 'lhe only incident during their long stay there was a visit that be and the Ladákis paid to the great Tashilumbo monastery. This monastery lies about half a mile south-west of the city, and is the same as that visited, and fully described by Turner. 'The Pundit would rather not have paid the Lama a visit, but he thought it imprudent to refuse, and therefore joined the Ladákis, who were going to pay their respects to him. The Pundit confesses that, though personally a follower of Brahma, the proposed visit rather frightened him, as, according to the religion of his ancestors, who were Budhists, the Lama ought to know the secrets of all hearts. However, putting a bold face on the matter, he went, and was much relieved to find that the Lama, a boy of 11, only asked him three simple questions, and was, according to the Pundit, nothing more thau an ordiuary child, and did not evince any extra intelligence. At Shigátze the Pundit took to toaching Nepalcse shopkeepers the Hiudce method of calculation, and thereby earned a few rupees.

The great road, which had hithcrto been more or less close to the great Nárichú river, from Shigatze goes considerably south of that river. On the 25th December they reached the large towu of Gyangze, on the Penanangchú river, which was then frozen hard enough to bear men. Crossing the lofty Kharola momutains, they arrived on the 31st December at Nang-ganche jong, a village on the Yamdokeho lake, with the usual fort on a small hill. For two days the l'undit coastel along the Great Yamulokelo laket. On the second day he nearly fell a prey to a band of robbers, but, being ou horselback \ddagger, he managed to escape, and on the 2nd Jauuary reached Demálang, a village at the northern augle of the lake. From Demálang the lake was secu to stretch some 20 miles to the south-cast. The Pundit estimated the circumference of the lake to he 45 miles, but, as far he saw, it was only 2 to 3 miles in width. IIe was informed that the lake encircled a large island, which rises into low rounded hills 2 or 3,000 feet above the surface of the lake. These hills werc covered with grass up to the top. Between the hills and the margin of the lake several villages and a white monastery were visible on the island. The villagers keep up their communication with the mainland by means of bonts. The Pundit was told that the lake had no outict, but as he says its water was perfectly fresh, that is probably a mistake; if so, the Pundit thiuks the outlet may be on the eastern side, where the mountains

[^5]appeared to be not quite so high as those ou the other sides. The evidence as to the lake encircling a very large island is unanimous. Almost all former maps, whether derived from the Chinese maps made by the Lamas, or from native information collected in Hindustan, agree i: giving the island a very large area, as compared with the lake in which it stands. This is however a very curious topographical feature, and as no similar case is known to exist elsewhere, it might perhaps be rash to take it for granted, until some reliable person has actually made the circuit of the lake. Meantime the Pundit's survey goes a considerable way to confirm the received theory. The lake, from the Pundit's observations, appears to be about 13,500 feet above the sea; it contains quantitics of fish. The water was very clear, and said to be very deep.

The island in the centre must rise to 16,000 feet above the sea, an altitude at which coarse grass is found in most parts of Tibet.

From the basin of the Yamdokeho lake the party crossed over the Khambala mountains by a high pass, reaching the great Nárichú (the Bralmaputra) at Khambabarche; from thence they descended the river in boats to Chusul village. Near Chusul they again left the grent river, and ascending its tributary, the Kichu Sangpo or Lhasu river, in a north-casterly direction reached Lhasa on the 10th of January 1866.

The Pundit took up his abode in a sort of caravanserai with a very long name, belonging to the Tashilumbo monastery ; he hired two rooms that he thought well suited for taking observations to stars, \&c., without being noticed. Here he remained till the 21st of April 1866. On one occasion he paid a visit to the Goldan monastery, two marehes up the great road to Clina, which runs from Lhasa in a north-easterly direction. He also attempted to go down the Brahmaputra, but was told that it was impossible without a well-armed party of a dozen at least. His funds being low, he was obliged to give up the idea, and indeed, judging from all accounts, doubted if he could have done it with funds. The Pundit's account of the eity of Litasa agrees, in the main, with what has been written in Messrs. Huc and Gabet's book as to that extraordinary capital, which the Pundit found to be about $11,4, \mathrm{~J}$ feet above the sea. He particularly dwells upon the great number, size and maguificence of the various monasteries, and the vast number of monks, \&c., serving in them.

He had an interview with the Grand Lama, whom he describes as a fair and handsome boy of 13 years of age. The Lama was seated on a throne six feet high, and on a lower throne to his right was seated his chief minister, the Gyalbo* or Putolah raja, as he is called by the Newár people. The Gyallo is evidently the actual ruler of Lhasa, under the Clinese anobán or resident, the Grand Lama being a puppet in the hauds of the Gyalbos.

It is curious that the few times these Great Lamas have heen scen by reliable people, ther have been always found to be small boys, or fair, effeminate-looking young men. Moorcroft remarks on the emasculated appearance given to them in all ne pictures of them that he saw during his journey to Gartokh, and the same may be remarked as to the pictures of Lamas in the monasteries of Ladak. M. Huc says that the Delai Lama at Lhasa, during their visit in 1816, was nine years of age, and had been Grand Lama for ouly six years, so that he must have transmigrated once, at any rate, between that time and the Pundit's visit in 1866, possibly oftener, as M. Huc says that, during the time one Nomeklian or Gyalbo was in office, "threc successive Delai Lamas had died very soon after rearhing the age of majority." Turner found the Grand Tashilumbo Lama quite a child in 1783. From the above it would appear that the poor Lamas are made to go through their transmigrations very rapidly, the intervals being probably in inverse proportion to the amonnt of trouble they give to the Gyalbo. If the Pundit is right in saying that the Lamas are only allowed to transmigrate thirteen times, and the present Delai Lama is in his thirteenth body, some changes may be expectel before very long in the Lhasa Government. The Pundit gives a very curious account of the festival observed at Lhasa on and after their new year's day.

Having been so loag away, the Pundit's funds had arrived at a very low cbb, and he

[^6]was obliged to make his livelihood by teaching Nepalese merchants the Hindee method of accounts. By this means he got a little more money, but the merchants, not being quite as liberal as those of Sligátze, chicfly remumerated him by small presents of butter and food, on which he managed to subsist. During his stay in Lhasa the Pundit scems to have been unmolested, and his account of himself was only once called in question. On that vecasion two Mahomedans of Kashmiri descent managed to penetrate his disguise, and made him confess his secret. However they kept it faithfully, and assisted the poor Pundit with a small loan, on the security of his watch. On another oceasion the Pundit was surprised to see the Kirong governur in the streets of Lhasa. This was the same official that had made so much difficulty nhout letting him pass Kirong ; and as the Pundit lad (through Chúng Clú) agreed to forfeit his life if, after passing Kirong, he went to Lhasa, his alarm may easily be imagined. Just about the same time the Pundit saw the summary way in which treachery was dealt with in Lhasa: A Chinaman, who had raised a quarrel between two monasteries, was taken out and behcaded without the slightest compunction. All these things combined alarmed the Pundit so much that he changel his residence, and from that time seldom appeared in public.

Early in April the Pundit heard that his Ladáki friends were about to return to Láalak with the tea, \&e., that they had purchased. He forthwith waited on the Lopehak, and was, much to his delight, not only allowed to return with him, but was told that he would be well cared for, and his expenses paid en route, and that they need not be repaid till he reached Mansarowar. The Pundit, in fact, was a favorite with all who came in contact with hin.

On the 21 st April he left Lhasa with the Ladáki party, and marching back by the great road as before, reached Tadúm monastery on the 1st of June.

From Tadúm he followed the great rond to Mansarowar, passing over a very elevated, tract of country from 14 to 16,000 feet above the sea, inhabited solely by nomadic people, who possess large flocks and herds of sheep, goats and yaks. On the rond his servant fell ill, but his Ladáki companions assisted him in his work, and he was able to carry it on. Crossing the Mariam-La mountains, the watershed between the Brahmaputra and the Sutlei, le renched Darchan, between the Mansarowar and the Rakas Tall, on the 17 th of Junc. Here he met a traler from British territory who knew him, and at once enabled him to pay all his debts, except the loan on his watch, which was in the hands of one of the Ladákis. He asked his friends to leave the watch at Gartokh till he redeemed it.

At Darchan the Pundit and his Ladáki companions parted with mutnal regret, the Lat dákis going north towards Gartokh, and the Pundit marching towards the nearest pass to the British territory, accompanied by two sous of the man who had paid his debts.

The Pundit's scrvant, a fuithful man from Zákar in Ladák, who had stuck to him throughout the journey, being ill, remained behind. IIc answered as a sort of sceurity for the Pundit, who promised to send for him, and at the same time to pay all the money that had been udvanced. Leaving Durchan on the 20th June, the Pundit reached Thájung on the 23rd, and here he was much astonished to find even the low hills covered with snow in a way he had never seen before. The fact being that lie was approaching the outer Ilimalayan chain, and the ground he was on (thongh lower than much of the conntry he had crossed earlicr in the season) was close enough to the outer range to get the full benefit of the moisture from the Hindustan side. The snow rendered the route he meant to take impracticable, and he had to muke a great detour. Alter an adventure with the Bhotivas, from whom he escaped with difficulty, he finally crossed the Ilimalayan range on the 26 th Junc, and thence descended into British territory after an absence of 18 months. As soon after his arrival as possible, the Pundit sent back two men to Darchan, with money to pay his delts, and directions to bring back his servant. This was done, aud the servant artived all safe, and in good health.

The Pundit met his brother, who failing to make his way to Lhasa, had returned ly a lower road through the Nepalese territory. This brother had been told to penetrate into Tibet, and, if possible, to assist the Pundit. The snow had however prevented him from starting. IIe was nuw, at the Pundit's request, sent to Gartokh to redeem the watch, and to carry on a route-survey
to that place. The Pundit handed over his sextant, and told him to connect his route with the point where the Bhotiyas had made the Pundit leave off. The brother succeeded in reaching Gartokh, redeemed the watch, and after making a route-survey from the British territories to Gartokh and baek, he rejoined the Pundit, and they both reuched the Head-Quarters of the Survey on the 27 th of Octoleer 1866.

During the regular survey of Ladak, Captain Montgomerie had noticed that the Tibetans almays made use of the rosary aud prayer-wheel*, he consequently reconmended the Pundit to carry both with him, partly because the character of a Budhist was the most appropriate to assume in 'Tibet, but, still more, because it was thought that these ritualistic instruments would (with a little adaptation) form very useful adjuncts in carrying on the route-survey.

It was necessary that the Pundit should be able to take his compass bearings unobserved, and also that, when counting his paces, he should not be interrupted by having to answer questions. The Pundit found the best way of effecting those objects ras to mareh separate with liis servant either behind or in front of the rest of the camp. It was of course not always possible to effect this, nor could strangers be altogether avoided. Whenever people did come up to the Pundit, the sight of his prayer-wheel was generally sufficient to prevent them from addressing him. When he saw any one approaching, he at once began to whirl his prayer-wheel round, and as all good Budhists whilst doing that are supposed to be absorbed in religious contemplation, he was very seldom interrupted.

The prayer-wheel consists of a hollow cylindrical copper box, which revolves round a apindle, one end of which furms the handle. 'The cylinder is turned by means of a piece of copper attached by a string. A slight twist of the hand makes the cylinder revolve, and each revolution represents one rejetition of the prayer, which is written on a seroll kept inside the cylindert. The prayer-wheels are of all sizes, from that of a large harrel downwards; but those carried in the hand are generally four or six inches in height by about three inches in diameter, with a handle projecting about four inches below the botton of the cylinder. The one used by the Pundit was an ordinary hand one, but instead of carrying a paper scroll with the usual Budhist prayer "Om mani padmi hom," the cylinder had inside it long slips of paper, for the purpose of recording the bearings and number of paces, \&ce. The top of the cylinder was made loose enough to allow the paper to le taken out when required.

The rosary, which ought to have 108 beads, was made of 100 beads, every tenth bead being much larger than the others. The small beads were made of a red composition to imitate coral, the large ones of the dark corrugated seed of the udrâs. The rosary was carried in the left slecve; at every hundredth pare a boad was dropped, and each large bead dropped, consequently, represented 1,000 paces. With his praycr-whecl \ddagger and rosary the Pundit always mauaged in one way or another to take his bearings and to count his paces.

The latitude observations were a greater difficulty than the route-survey. The Pundit re-' quired to observe unseen by any one except his scrvant; lowever, with his assistance, and by means of various pretences, the Pundit did manage to observe at thirty-one different places. His observations for latitude were all taken with a large sextant, by Elliot, of 6 -inch radius, reading to ten seconds. The Pundit was supplied with a dark glass artificial horizon, but Captain Montgomerie finding that it was far from satisfactory, ordered the Pundit not to use it, unless he found it impossible to use quicksilver. A shallow wooden trough with a spout was made for the quicksilver, but as anything in the shape of a glass cover could not be carried, the Pundit was directed to protect his quicksilver from the wind as he best could, by sinking it in the ground, \&c. The Puodit had invested in a wooden bowls, such as is carricd at the waist hy all Bhotiyas. 'This howl

[^7]is used by the Bhotiyas for drinking purposes; in it they put their water, tea, broth, and spirits, and in it they make their stirabout with dry flour and water, when they see no chance of getting anything better. The Pundit, in addition, found this bowl answer capitally for his quicksilver, as its deep sides prevented the wind from acting readily on the surface. Quicksilver is a difficult thing to carry, but the Pundit managed to carry his safely nearly all the way to Lhasa, by putting some into a cocoanut, and by carrying a reserve in cowrie shclls closed with wax. At Piálitejong however the whole of his quieksilver escaped by some accident; fortunately he was not far from Lhasa, where he was able to purchase more. The whole of his altitudes were taken with the quicksilver.

Reading the sextant at night without exciting remark was by no means easy. At first a common bull's-eye lantern answered capitally, but it was seen and admired by some of the curious officials at the Tadúm monastery, and the Pundit, who said he had brouglit it for sale, was forced to part with it, in order to avoid suspicion. From Tadím onwards a common oil wick was the only thing to be got. The wind often prevented the use of it, and, as it was difficult to hide, the Pundit was at some of the smaller places obliged to take his night observation, and then put his instrument carefully by, and not read it till the next morning; but at most places, including all the more important ones, he was able to read his instrument immediately after taking his observations.

The results of the expedition delivered at the Head-Quarters consists of-
lst.-A great number of meridian altitudes of the sun and stars, taken for latitude at thirty-one different points, including a number of observations at Lhasa, Tashilumbo, and other important places.
$2 n d$ - - In elaborate route-survey, extending over 1,200 miles, defining the road from Kathmandû to 'Tadúm, and the whole of the Great Tibetan road from Lhasa to Gartokh, fixing generally the whole course of the great Brahmaputra river from its source near Mausorawar to the point where it is joined by the stream on which Lhasa stands.
$3 r d$.-Observations of the temperature of the air and boiling water, by which the height of thirty-three points have been determined, also a still greater number of obscrvations of temperature, taken at Shigátze, Lhasa, \&c., giving some idea of the climate of those places.

4th.-Notes as to what was seen, and as to the information gathered during the expedition.

The latitude observations were taken with a large sextant of 6 -inch radius, and have been reduced in the G. 'T. S. Computing Office. There is no doubt but that the Pundit is a most excellent and trustworthy observer. In order to see this, it is only necessary to look at the accompanying list, vide Appendix. At any one point the results rleduced from a variety of stars differ inter se so very little, that it is not too much to say that the mean must be true within a limit of a minute.

The merits of the route-survey are more difficult to decide upon, but the means of testing the work are not wanting. The bearings from point to point were observed with a compass, and the number of paces between were counted. From the bearings and number of paces there was no difficulty in computing the latitude and departure in paces, or the number of paces that the route had advanced in latitude, and also in longitude. In order to determine the value of the pace, there was first the latitudes derived from the astronomical observations determined during the route-survey, and second the latitudes and longitudes of Kathmandî, of the Mansarowar lake, of places in Kumaon, and, lastly, the longitudes which Turner determined by his route-survey ruuuing nearly due north from the Chumulárí peak. Turner's route forms a most important check upon the Pundit's work, and prevents any accumulation of error which might occur in a route-survey carried over such a great space as 9 degrecs of longitude. As far as the longitudes are concerned, that of Kathmandu, which has hitherto been accepted as approximately correct, was not found to be quite in accordance with the data forthcoming. It was consequently necessary to re-determine the longitude.

Colonel Crawford's trigonometrical surver and map undoubtedly still supply the most reliable data available as to the position of Kathmandû, though his observations were made as far back as the ycar 1802.

No member of the G. T. Survey of India has hitherto been allowed to use a surveying instrument in Nepal, but, by means of stations in British territory, a number of peaks have leen accurately determined to the north of the Nepal valley. Several of these peaks have fortunately proved to be identical with those determined by Crawford.

| Crawford's Mount | Daibun, or | L, corresponding with | G. T. S. | No. XXV |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Do. | D | do. | do. | " XXI |
| Do. | C | do. | do. | " XX |
| Do. | B | do. | do. | , XVIII. |

Now, on page 264 of London edition of Vol. XII of the "Asiatic Researches" Crawford's distance of Mount Daibun (or XXV G. T. S.) from Kathraandû is given as 35_{1}^{5} geographical miles.

Do. of D	(or XXI	do.)	do.	do.	48	"
Do. of C	(or XX	do.)	do.	do.	59	"
Do. of B	(or XVIII	do.)	do.	do.	68	"
			",				

Taking the G. T. S. positions of the above points, we find that the distances given above intersect in points varying in longitude from $85^{\circ} 16 \frac{1}{2}^{\prime}$ to $85^{\circ} 19^{\prime}$, and varying in latitude from $27^{\circ} 42^{\prime}$ to $27^{\circ} 43^{\prime}$. According to Crawford's map* the Dailm pealk lies 25° E. of north from Kathmandû ; that bearing with the distance given above, viz., 35_{7}^{7} geographical miles, would put Kathmandû in latitude $27^{\circ} 43^{\prime}$, longitude $85^{\circ} 16 \mathfrak{t}^{\prime}$. Crawford's latitude of Kathmandû by astronomical observationst is $27^{\circ} 42^{\prime}$. From the above it has been concluded that Kathmaudu is in N. lat. $27^{\circ} 42 \frac{1}{2}^{\prime}$, and E. long. $85^{\circ} 17^{\prime} 45^{\prime \prime}$.

It is greatly to be regretted that the Messrs. Schlagintweit did not finally determine the longitude of Kathmando in 1857, when they reccived permission to use their instruments in the Nepal valley. The longitude might have been determined with indisputable accuracy by the simple expedient of olserving the azimuth of one or more of the G. T. S. peaks north of Kathmandu. The Messrs. Schlagintweit state that they saw these peaks, and recognized them as those fixed by the G. T. Survey ; it is consequently all the more difficult to imagine why this great opportunity was lost. Their longitude of Kathmandû was determined by a clironometer, but as the time depends upon a single day's set of altitudes taken too near to the meridian, it cannot be accepted as conclusive, but, as far as their observations can be rclied on, they tend to coufirm the lougitude \ddagger adopted above, viz., $85^{\circ} 17^{\prime} 45^{\prime \prime}$.

The longitudes of the points in Kumaon have been derived from the Strachey's mnp§, and are known from the adjacent G. 'I. S. peaks to be correct within a very small limit. The longitude of Gyangze-jong (or Jhansû-jodg) has been taken from Turner's survey of the road from Bhootan to Tibet, made in 1783 . Turner's lougitude of the Chumularí peak is $89^{\circ} 18^{\prime}$, the G. T. S. longitude being $89^{\circ} 18^{\prime} 43^{\prime \prime}$. This coincidence no doubt is fortuitous, as there is an error of 11 ' in the longitude of the origin of his survey ; however it may have happened, Turner's longitudes up to Chumularí seem to be correct, for Captain Godwin-Austen, whilst surveying in Bhootan, ascertained that the village of Phárí, close to the Chumulárí, is very nearly in the longitude ascribed to it by Turner. Turner morcover puts Tassísudon in longitude $89^{\circ} 41^{\prime}$, and Captain Austen in $89^{\circ} 40^{\prime}$.

It may consequently be assumed that the longitude of Turner's route near the Chumulárí peak is nearly correct. From the ncighbourhood of the Chunulárí to Jhansû-jong, Turner's route runs nearly due north, and thercfore any error in his estimate of distances would have a

[^8]very small effect on the longitude. This is fortunate, as it is not known how Turner measured his distances, though he specially states that he took bearings with a compass. The distance between Chumulárí and Jhansú-joug is only about 80 miles, and as the bearing is so northerly (viz., $20^{\circ} \mathbf{E}$. of N.), it may be concluded that any error in the distance has had but small effect on the longitude. The longitude of Gyangze has therefore been assumed from Turner to be $89^{\circ} 31^{\prime}$. Turner observed the latitude at Tashilumbo (Shigátze), and made it $29^{\circ} 4^{\prime} 20^{\prime \prime}$, the Pundit makes it $29^{\circ} 16^{\prime} 32^{\prime \prime}$. Turner's latitude of Chumulárí is $28^{\circ} 5^{\prime}$, the G. T. S. latitude is $27^{\circ} 50^{\prime}$. Turner very possibly was not accustomed to take latitudes, and as the Surveyor (Lieutenant S. Davis) sent with him was not allowed to go beyond Tassísudon, it is not to be wondered that there are differences in his latitudes. The comparison of several latitudes now well-kuown, tend to show that the semi-diameter of the sun may have been omitted by Turner, as his observations were to the sun only.

The Pundit's observations at Shigátze extend over many days, and include thirteen observations to the sun and a variety of southern stars, as well as to the pole star. The latitudes derived from these obscruations agree capitally inter se. The Pundit was thoroughly practised in the method of taking latitudes, and as his determinations of many well-known points, such as Bareilly, Moradabad, se., have proved to be correct with only a pair of observations, there can be no doubt about aceepting his latitude of Shigatze, where he took so many. The Pundit followed the same river as Turner for 50 miles between Gyangze and Shigátze. They agree in making the bearing between those places 62° west of north. The bends of the river as given by them agree in a grucral way, but the distance by Turner is 39 miles, and by the Pundit 46 miles. As the former appears to have only estimated his distances by guess, while the latter paced them carefully, the result by the Pundit has been adopted as the most correct.

In a route-survey where bcarings, distances and latitudes only are available, it is obvious that a route rumning meridianally is the most easily checked. Unfortunately in this route-survey the only part that runs very favorably is that from Kuthmandû to Tadúm, where there is a difierence of latitude of 118^{\prime} to a difference of longitude of only 75^{\prime}. The length of the pace derived from the difference of latitude is $2 \cdot 6074$ feet, or 31 inches. The remainder of the route from the Mansarowar to Gyangze runs so nearly east and west that the differences of latitudes hetween the various points are too small to give a reliable value for the pace, but, as far as they go, these differences indicate a longer pace than that derived from Kathmandû to Tadúm. The direction of the route not being favorable for determining the pace from the latitudes, recourse has been had to the known differences of longitude between Kumaon, Kathmandû, and Gyangze, derived as above. The difference of longitude between Kathmandû and Kumaon makes the length of the Pundit's $2 \cdot 53$ fect, or 30 inches. The difference between Kathmandû and Gyangze makes the length of the Pundit's pace to be 2.75 fect, or 33 inches.

The route between Kathmandû and Kumaon taken by the Pundit is the worst part of the whole of his route. It crosses the Himalayas twice, and also several high passes, and the road on the Cis-Himalayan side is particularly rough and rocky, with great ascents and descents. It was consequently to be expected that his pace would be somewhat shorter than on the route between Talúm and Gyangze, which rums the whole distance by the ensicst slopes possible, without crossing a single stecp pass. The Pundit's pace, as derived from his own difference of latitude between Kathmandû and Tadím, is 2.61 feet, or 31 inches. If this pace were adopted between Kathmandù and Kumaon, the difference of longitude between the two would be only 133^{\prime} harger than the assumed difference, or in $320^{\prime}\left(5^{\circ} 20^{\prime}\right)$ only a discrepancy at the rate of 4 per cent. If this same pace were used between Tadúm and Gyangze the difference of longitude would be 17^{\prime} less than the assumed difference, viz., $328^{\prime}\left(5^{\circ} 28^{\prime}\right)$, or a discrepancy at the rate of only 5 per cent.

The two lengths of the pace, derived from the difference of longitude, agrecing so closely with that derived from the Pundit's difference of latitude between Nepal and Tadún, the one leing slightly shorter in the roughest ground, and the other slightly longer in the casiest ground, it seems reasonable to conclude that the lengths of pace derived from the longitules are guite in accordance with all that is known of the routc. The Puadit was practised to walk

2,000 paces in a mile, or say a pace of $31 \frac{1}{2}$ inches, and he has certainly adluered very elosely to it. From Gyangze to Lhasa the road is very similar to that between Tadúm and Gyangze, and the rame value of pace, viz., $2 \cdot 7^{*}$ has been used. This gives a difference of longitude of $1^{\circ} 28^{\prime} 7^{\prime \prime}$. The Pumlit's latitude of Lhasa is derived from twenty separate observations to the sun and stars. It is probably within half a minute of the correct value. From the above it is concluded that Lhasa is in north latitude $29^{\circ} 39^{\prime} 17^{\prime \prime}$, and east longitude $90^{\circ} 59^{\prime} 43^{\prime \prime}$.

Between the Mansarowar lake and Shasa the Pundit travelled by the great road called the Jong-lam \dagger (or Whor-lam), by means of which the Chinese officials keep up their communications for 800 miles along the top of the Himalayan range from Lhasa, north of Assam, to Gartokh, north-cast of Simla. A separate memorandum is given hercafter as to the stages, \&c., on this extraordinary road. Starting from Gartokli on the Indus, at 15,500 feet aloove the sea, the road crosses the Kailas range by a very high pass, descends to about 15,000 feet in Narí Khorsum, the upper basin of the Sutlcj, and theu coasting along the Rakas Tâl, the Mansarowar, and another long lake, rises gradually to the Mariham-la pass, the watershed hetween the Sutlej and Brahmaputra, 15,500 feet above the sea. From the Mariham-lia the road descends gradually, following close to the north of the main source of the Brahmaputra, and within sight of the gigantic glaciers, which give rise to that great river. At about 50 miles from its source the road is for the first time actually on the river, luut from that point to Tadúm it ardheres very closely to the left bank. Just before reaching Tadúm the road crosses a great tributary, little inferior to the main river itself. The Tadum monastery is about 14,200 feet above the sea.

From Tadúm, the road follows down the Brahmaputra, sometimes close to it, sometimes, several miles from it, but at 80 miles cast of 'ladim the rond leaves the river, and crossing some higher ground, descends into the valley of the Raka Sangpo river, which is a great tributary of the Brulmaputra; leaving the Rakas valley, the road crosses over the mountains, and again reaches the Bralımaputra at about 180 miles below Tadúm. About 10 miles lower the road changes from the left bank to the right bank, travellers having to cross the great river by ferryboats uear the town of Janglache. Below Janglache, the road follows the river closely to a little below its junction with the Raka Sangpo. From that point the road runs some 10 miles south of the river, crossing the mountains to the large town of Shigatze, 11,800 feet above the sea. From Shigátze the road runs cousiderably south of the rivir, it ascends the Penanangchú river, and crossing the Kharola pass, 17,000 feet above the sea, descends into the basin of the Yamdokcho lake. For two long stages the road runs along this great lake, which is 13,700 feet above the sea, then rising sharply, crosses the lofty Khamba-la pass, and descends to the Brahmaputra again, now only 11,400 feet above the sed. Following the great river for one stage more, the road (which has hitherto been running from west to east) here leares the Brahmaputra, and ascends its tributary, the Kiclin Sangpo, in a north-easterly direction for three stages more to Lhasa, which is 11,700 feet above the sea. The total distance is about 800 miles from Gurtokh to Lhasa.

This long line of road is generally well-defined, though it is not a made rond, in the European sense of the word. The natural slopes over which the rond is carried are however wonderfully easy. The Tibetans have, as a rule, simply had to clear away the loose stones, and only in three or four places, for a few miles, has anything in the way of making a road bcen necessary.

In many parts there appears to have been considerable danger of losing the road in the open stretches of the table-land, the whole surface looking very mueh like a roal; but this denger is guarded against by the frequent erection of piles of stones, surmounted with flags on sticks, \&ce. These piles, called lapcha by the Tibetans, were found exceedingly handy for the survey; the quick eye of the Pundit gencrally caught the forward pile, and even if he did not,

[^9]\dagger Lam mesue rond in the 'libctan language.
he was sure to sec the one behind, and in this way gencrally sccured a capital ohject on which to take his compass bearings. The Tibetaus look upon these piles partly as guide posts, and partly as objects of veneration; travellers generally contribute a stone to them as they pass, or it very devout and generous, add a piece of rag ; consequently, on a well-used road, these piles grow to a great size, nud form conspicuous objects in the landscape. Over the table-land the road is broad and wide enough to allow several travellers to go abreast; in the rougher portions the road gencrally consists of two or three narrow paths, the width worn by horses, yaky, men, \&c., following one auother. In two or three places these dwindle down to a single track, but are always passable by a horseman, and, indeed, only in one place, near Phuncholing, is there any difficulty about laden animals. A mau on horseback need never dismount between Lhasa and Gartukh, except to cross the rivers.

The road is, in fact, a wonderfully well-maintained one, considering the very elcvated and desolate mountains over which it is carried. Between Lhasa and Gartokil there are 22 staging places, called Tarjums, where the baggage animals are changed. These Tarjums are from 20 to 70 miles apart; at each, shelter is to be had, and efficient arrangenents are organized for forwarding otticials and messengers. The Tarjums generally consist of a house, or honses, made with sumdried bricks. The larger Tarjums are eapable of lolding 150 to 200 men at a time, but some of the smaller can ouly hold a dozen people ; in the latter case, furtleer accommodation is provided by tents. At six 'Tarjums tents only are forthcoming. Each Tarjum is in charge of an official, called 'Tarjumpá, who is obliged to have horses, yaks, and coolies in attendance whenever notice is received of the approach of a Lhasa official. From ten to fifteen horses, and as many men, are always in attendance night and day. Horses and beasts of burden (yaks in the higher ground, donkeys in the lower) are forthcoming in great numbers when required; they are supplied loy the nomadic tribes, whose camps are pitched near the halting houses.

Though the iron rule of the Lhasa authoritics keeps this high road in order, the difficultics and hardships of the Pundit's march along it cannot be fully realized, without bearing in mind the great elcration at which the road is carried. Between the Mansarowar lake and the Tadúm monastery the average height of the road above the sea must be over 15,000 feet, or about the height of Mont Blanc. Between Tadúm aud Lhasa its average height is 13,500 feet; and only for one stage docs the road descend so low as 11,000 fect, whilst on several passes it rises to more than 16,000 feet above the sea. Ordinary travellers with laden animals make tro to five marches between the staging-houses, and ouly special messengers go from one staging-bouse to another without halting. Between the staging-houses the Pundit had to sleep in a rude tent that frecly admitted the biting 'ribetan wind, and on some occasions he had to slecp in the open air.

Bearing in mind that the greater part of this march was marle in mid-winter, it will he allowed that the Puudit has performed a feat of which a native of Hindustan, or of any othir country, may well be proud. Notnithstanding the desolate track they crossed, the camp was not altogether without creature comforts. 'The yaks and donkies carried a good supply of erdinary necessaries, such as grain, barley-meal, tca, butter, \&c., and sheep and goats were gencrally procurable at the halting places. A never failing supply of fuel, though not of the pieasantest kind, was generally fortheoming from the argols or dried dung of the bagrage animals, each camp being supposed to leave behind at least as many argols as it burns. At most of the haiting places there is gencrally a very large accumulation.

Between the Mansarowar and Sarkajong nothing in the shape of spirits was to be had, but to the eastward of the latter place a lifuor made from barley could generally be got in every village. This liquor, called chung, varics in strength, according to the season of the year, being in summer something like sour becr, and in the winter approximating closely in taste and strength to the strongest of smoked whiskey. The good-natured 'ribetans are constantly brewing chung, and they never begrudge anyone x drink. Thirsty travellers, on reaching a vilhge, soon find out where a fresh brew has been made; their drinking cups are always handy in their belts, and they seldom fail to get them filled at least once. The Pundit stoutly denied that this custora tended to druakeuness among lis Tibetan friends; and it wust be allowed that in Ladak,
where the same custom prevails, the people never appeared to be much the worse for it ; guides had however to be rather closely watched, if the march took them through many villages, as they seldom failed to pull out their cup at each one.

A good deal of fruit is said to be produced on the banks of the Brahmaputra, between Sligátze and Chushul. The Pundit only saw it in a dried state.

When marching along the great road, the Pundit and his companions rose very early; hefore starting they sometimes made a brew* of tea, and another brew was always made about the middle of the march, or a mess of stirabout (suttoo) \dagger was made in their cups, with barleymeal and water. On arriving at the eud of a march they generally had some more tea at once, to ntave off the cravings of hunger, until something more substantial was got ready, in the shape of cakes and meat, if the latter was available. Their marches generally occupied them from dawn till 2 or 3 p.m., but sometimes they did not reach their camping ground till quite late in the eveniug. On the march they were often passed and met by special messengers, riding along as hard as they could go. The Pundit said these men always looked haggard and worn. They have to ride the whole distance continuously, without stopping either by night or diy, cxecpt to eat food and change horses. In order to make sure that they never take off their clothes, the breast fastening of their over-coat is scaled, and no one is allowed to break the seal, except the official to whom the messenger is sent. The Pundit says he saw several of the messengers arrive at the end of their 800 miles ride. Their faces were cracked, their eyes blood-shot and sunken, and their bodies eaten by lice into large raws, the latter they attributed to not being allowed to take off their clothes.

It is difficult to imagine why the Lhasa authorities are so very particular as to the rapid transmission of official messages, but it seems to be a principle that is acted on throughout the Chinese ermpire, as one of the means of Government. Ordinary letters have a feather attached to them, and this simple addition is sufficient to carry a letter from Lhasa to Gartokh, 800 miles, in little over thirty days. A messenger arriving at a village with such a letter is at once relieved hy another, who takes it on to the next village. This system was frequently made use of by the Surveyors in Ladák and Little Tibet, and it generally answered well.

If any very special message is in preparation, and if time permits, an ordinary messenger is sent ahead to give notice. Food is then kept ready, and the special messenger only remains at each staging-house long enough to cat his food, and then starts again on a fresh horse. He rides on, day and night, as fast as the horses can carry him. The road throughout can be ridden over at night, if there is no moon the bright starlight \ddagger of Tibet gives sufficient light. Tibet is rarely troubled by dark nights; but, in case it should be cloudy, or that a horse should break down, two mounted men always accompany the messenger. These men are changed at every stage, and are thorouglly acquainted with their own piece of road. Each of these two men has, at least, two spare horses attached behind the horse he is mounted. If any horse gets tired it is changed at once, and left on the road, to be picked up on the return of the men to their own homes. By this means the messenger makes great progress where the road is good, and is never stopped altogether, cven in the rougher portion. A special messenger does the 800 miles in twenty-two days on the average, occasionally in two or threc days less, but only on very urgent occasions. The Pundit made fifty-one marches between Lhasa and the Mansarowar lake, and his brother makes out the remaining distance to Gartokh seven marches more, or, in all, fifty-eight marches. The Pundit found very few of the marches short, while a great many were very long and tedious.

Little iden of the general aspect of the country which the road traversed could be given by the l'undit.

From the Mansarowar lake to Tadúm (140 miles) glaciers seem always to have been risible to the south, but nothing very bigh was seen to the north; for the next 70 miles the

[^10]mountains north and south seem to have been lower, but further eastward a very ligh snowy range was visible to the north*, running for 120 miles parallel to the Raka Sangpo river. From Janglache to Gyangze the Puudit seems to lave seen uothing high, but he notices a very large glacier between the Penanasg valley and the Yamdokeho lake.

From the lofty Khamba-la pass the Pundit got a capital view. Looking south he could see over the island in the Yandokeho lake, and made out a very high range to the south of the lake ; the mountains to the cast of the lake did not appear to be quite so high. Looking north the Pundit had a elcar view over the Brahmaputra, but all the mountains in that direction were, comparatively speaking, low, and in no way remarkable.

About Lhasa no very high mountains were seen, and those visible appeared to be all about the same altitude. IIardly any snow was visible from the city, even in winter. From the Mansarowar to Ralung, 400 miles, there were no villages, and no cultivation of any kind. The mountains had a very desolate appearance, but still numerous large camps of black teuts, and thousands of sheep, goats, and yaks were seen. The fact being that the mountain sides, though looking so arid and brown, do produce a very nourishing coarse grass.

To the eastward of Ralung, cultivation and trees were seen every day near the villages. Near the Yamdokcho lake the lower mountains seem to have had a better covering of grass. The Pundit mentions the island in the lamdokcho as being very well grassed up to the summit, which must be 16 or 17,000 feet above the sea. This extra amount of grass may be due to a larger fall of raiu, as the Pundit was informed that the rains were heavy during July and August.

As a rule, the Pundit's view from the road does not seem to have been very extensive, for although the mountains on either side were comparatively low, they generally hid the distant ranges.

The only geological fact elicited is that the low range to the east of the Lhasa river was composed of sandstone. According to the Pundit, this sandstone was very like that of the Siwálik range at the southern foot of the Himalayas.

The probability of this is perhaps increased by the fact that fossil bones are plentiful in the Lhasa district. They are supposed to possess great healing properties when applied to wounds, \&cc., in a powdered state. The Pundit saw quantities of fossils exposed for sale in the Lhasa bazar. The people there call them Dúg-rúpa, or ligltning bones. One fossil particularly struck the Pundit, it consisted of a skull which was about $2 \frac{1}{2}$ feet long, and $1 \frac{1}{2}$ feet broad. The jaws were elongated, but the points had been broken off. The mountains crossed were generally rounded with easy slopes. The roundness of those on the Yamdokelo island seems to have becn very remarkable; this general roundness and easiness of slope probably points to former glacier or ice action.

Besides the Yamdokcho, a good many smaller lakes were seen, and two much larger ones were heard of. Those seen bry the Pundit were all at about 14,000 feet above the sea. There are hardly any lakes in the lower Himalayas; the few that exist being all at, or below, 6,000 feet, but from about 14,000 to 15,000 feet lakes and tarns are particularly numeroust. This may be another evidence of former ice action.

Whilst the Pundit was at Shigátze and Lhasa, he took a series of thermometer observations to determine the temperature of the air. During November, at Shigatze, the thermometer always fell during the night below the freezing point, even inside a house. The lowest temperature recorded was 25°, and during the day the temprrature hardly ever rose to 50°. At Lhasa, in February, the thermometer generally fell below 32° during the night, and the lowest obserred

[^11]temperature was* 26°; during the day it seldom rose to 45°. During the whole time the Pundit was in the Lhasa territory, from September to the end of June, it never rained, and snow only fell once whilst he was on the march, and twice whilst in Lhasa.

The snow fall at Shigátze was said to be never more than 12 inches; but the cold in the open air must have been intense, as the water of running streams freezes if the current is not very strong. A good deal of rain falls during July and August about Shigátze, and there is said to be a little lightning and thunder, but the lundit does not recollect sceing the one or hearing the other whilst he was in the Lhasa territory. 'The wind throughout Tibet is generally very strong on the table-lands, but at Shigátze and Lhasa it dues not seem to have been in any way remarkable. The sky during the winter seems to have been generally clear.

The Pundit's heights were all determined thermometrically, that is, by observing the temperature of boiling water. The height of Kathmandû, thus determined, agrees very closely with that deduced from other sources; the thermometer used there, and at Muktinath, returned in safety, and was afterwards boiled at a trigonometrical station. It was found to agree with the observations taken before the Pundit went to Kathmandû. This thermometer was handed over to the Pundit's brother.

The Pundit took another thermometer with him to Lhasa, and, with it, all his higher points were determined. This latter was unfortunately broken near the end of the Pundit's march. There has, consequently, been no means of finding out whether it had altered in any way during the journey, nor any opportunity of testing it at known altitudes. If it had come back safely, there would have been no difficulty in having it boiled at trigonometrical stations of all heights, up to the lighest visited by the Pundit. This thermometer was boiled at Almorah before the Pundit started, and with that observation as a zero, the heights of Lhasa, \&ce., have been computed out.

The height of Darchan, a little above the Mansarowar lake, computed out in this way is found to be 14,489 feet above the sea. The Mansarowar lake, as derived from Captain H. Strachey's thermometrical observations, is $14,877+$ feet, or taking a mean between his height of the Mansarowar and Rakas Tal lakes it is about 15,000 feet. A result 4 or 500 feet higher than the Pundit's height. It may consequently be concluded that the Pundit's heights are not in excess.

With reference to the spelling of the name of the capital of Tibet, Lhasa has been adopted as that agrees best with the Pundit's pronunciation of the word. He says the word, means God's abode, from Lla a God, and Sa, a place.

It may be remarked that more bearings to distant peaks would have been a great addition to the Pundit's route-survey, but the recognizing of distant peaks from difterent points of view is a difficult matter, and only to be accomplished after much practice. The Pundit's next survey will, no doubt, be mnch improved in this respect. On the whole, the work now reported on has been well done, and the results are highly creditable to the Pundit.

[^12]† Menarowar, 175 feet above lake, air $46^{\circ} 0$ boiling point $186^{\circ} 0$

EXTRACTS FROM A dIARY KEPT BY PUNDIT *—————, DORING HIS JOURNET FROM nepal to lhasa, and from lilasa throdgil the upper valley of the brahmaputra to the source of that river near the mansarowar laie.

Having made our preliminary arrangements, I started from Nepal on the 20th. March 1865, nocompanied by my brother and four private servants. We arrived at aight-fall at Azidpur village, on the Lhásí road.

Mance 21st.-Crossed over the Nilkănt hills, and arrived at Sûndriphedi.
22nul.-After travelling all day, I arrived in the evening on the bank of the Bitrawăti atream.
23rd.-I arrived at Ramchú village, and took observations for latitude, and thermometrical observations.

24th.-Arrived at Náklang halting place.
25th.-Arrived at Shábro village, situated near the junction of the streams Gandak and Lendicha, and took observations for latitude. This is a customs' post, where all goods are taxed, and travellers have to pay a toll of 4 annas each; we paid Rs. 1-8 for our party.

26th.-Arrived at Medongpodo village, where we altered our mode of dress, adopting a mode familiar to the inhabitants of Lhásá, in order to preclude any suspicion as to the object of our visit.

27th.-Arrived about noon at Temuriá Bhansár (a Nepalese thannah and customs' post), where the officinls forced us to undergo a strict examination. Our boxes and baggage were closely scarched, but they fuiled to discover our instruments, which were hid in a secret compartment of a box; they, however, compelled us to pay a toll of Rs. 4, after examining our purwanahs. We then procceded on our way, and by night-fall arrived at Raswágarhi, a fort built by Jung Bahadoor in 1855, during a war between him and the Lhásá rajah. This furt is situated near the junction of the Gandak and Lendichû streams, the latter forming the boundary between the Nepal and Lhásá territories. A stone bears a Chinese inscription mentioning this fact. I here took observations for latitude, and thermometrical observations.

28 th. -I arrived at noon on the left bank of the Gandak at Pemánesá halting place, near a thatnal of the Kirong district. We were here stopped, and interrogated as to who we were, and as to the object of our visit. Our answer was that we were Bisahiris*, and the objects of our visit wes to purchase horses, and also to pay our homage at the shrine of the Lhásá divinity. On hearing this, they told us that we must be detained till the Kirong governor gave us his sanction to pass; snd, neting up to their decision, they sent word to Kirong, meanwhile searching our boxes, de.; but the same good fortune attending uf, they failed to discover the secret recesses where our instruments were hidden ; they, however, made us pay a toll of Rs. 5 for myself and party. After detaining us the whole of the next day, the 29th, and a portion of the 30 th, the expected answer from the Kirong governor arrived, and was read to us. It stated that we were forbidden to continue our route by Kirong, becuuse this was not the orlinary route from Káthmándô to Lhisá, the proper route being vid Nílam or Kúti, and, had we been Bisahiris, the route we should have taken was via Mansarowar, and not this. Secing such a decided prohibition set agninst our continuing our onward march by Kirong, I demanded back the toll which had been imposed on us, but a portion only of the Its. 5 was returned. With heavy henrts and gloomy forebodings as to the ultimate success of our enterprise, we made a detour to Răswágárhi.

31st.-We left Răswágárhi fort early this morning, and arrived nt night-fall at Shábro. Here I was again questioned why I had returned, when I had told them on leaving the place on the first occasion that I was going on to Lhásá. I told them how it was thnt, after travelling up to Pemánesá unmolested, our further march was prohibited by the police at that thannah. They suggested to me that if I laid my complaint before another officinl, who lived some miles nwar, and who was in favor with the Potolah rajoh (the Lh\{́ań Lama's diwan), I might perhape get a passport to Lhisá through his intercession.

[^13]Acting up to this suggestion, I proceeded early the following morning to visit this official, and told him all that I had mentioned to the police at Pemánesá, and also exhibited to him the passports that I had in my possession. He listened to me with great attention, and evidently believed my statements. After a long pause he wrote a letter to the Kirong governor (Jongpon), stating that I was no impostor, but that my real object in wishing to visit Lhásá was for the purpose of purchasing horses, to visit tho alrine of the Lhásé divinity, and to recover certain sums of money due me by some of the Lhásí residonts. I succeeded completely in imposing upon this official, and elicited from him a promise that no one should now impede me. After making him a present of Ω few trifles, such as a pair of spectacles, n box of matches, dc., I withdrew to Shábro village, intending to start the following morning towards Kirong, armed with the letter.

Aphil 2nd.-Starting early from Shábro, we artived at noon at a serai called Dongkbang; here we were accidentally informed by some travellers that the Kirong governor (Jougpon) was the individual who had in previous years been the governor of Purng Taglí Kote, and the chief officiul at one time of Gartokh. This deprived us of all hope of being able to proceed onwards, for this chief of Kirong was personally well-acquainted with my brother, and had we proceeded, even with such influential support as the letter mentioned above was likely to give, yet the recognition of my brother by the Kiroug governor (which was certain to happen) would have prevented him from having any confidence in us, and would thus have thwarted our enterprise at the outset. My brother had very frequently (only a few jears previous) been brought in close and friendly contact with the govenor, and he well knew that we were no Bisnhiris. I then planned that my brother and three servants should return and stay at Nepal, till such time as the melting of the snow would render the road to Lhásá, vid Nílam or Kúti, practicable for travellers, while I, with one servant, should proceed by Kirong; but, after mature consideration, we nbandoned this plan, lecause, with but one servant, I might have fallen an easy prey to thieves. Accordingly we retraced our ateps, and on the 7 th April arrived at Khinchat bazar, situated on the bank of the Tirauli river. Here, thinking that our number (six) might create suspicion, I discharged two of our servants who knew but little of the Tibetan language. I made over to them the papers and work already finished, with instructions to deposit them in a safe place till my return. We ourselves marching back, arrived at the Batar bazar' by night-fall. Resuming our march the next morning, we arrived at Káthmándá on April 10th, 1865.

I was already acquainted with a resident of Káthmándû, and with his aid I took up my residence there, waiting till such time as the melting of the snow might render the road to Lhásá, via Nilam or Kúti, practicable to travellers. Meanwhile I made the acquaintance of all who I thought might enable me to compass my object, collecting as much information as to the rond to Lhasa, the state of the country, de., as I could, without creating suspicion. My friend promised to accompany me to Lhásá as my servant, on a pay of Rupees 25 per month. I thought he would be useful, as he had travelled the road, and was well-known all along it, but when the time came, he failed me.

Another resident of Káthmándû told me that it was fruitless to imagine that I could ever reach Lhási, for although I had tried only one of the two roads, i.e., the one by Kiroug, and had to return, yet there was less chance of success in reaching my destination by the other, viz., by Nilam or Kúti, for the authorities on this rond were much stricter than those I had met with on the Kirong road. He informed me that if I was not personally known to the (Jongpon) chief official at Nilam, he would on no account give me permission to travel to Lhásá, as he was forced to give security for the good conduct of those he passes. With the best intentions, he advised me to give up all thought of eceing Lhásii, telling me that even if I should be fortunate enough to pass through Nílam, yet a higher and stricter official residing at Dhingri Ohangá (Tingri Maidau)* would require better and stronger rensons before allowing me to gn to Lhásí. Suffering from anxiety, and losing nearly all hope of ever accomplishing ny design, I determined to overcome my despondence, and make one effort more. With this view I daily went about the city questioning all who were going to Lhásá, but none would allow me to nccompany them. At last I met with an apparently rich man on the eve of travelling to Lhńsa, and did all I could in my power to gain his confidence. When I thought I had partially succeeded, I asked him if he would nllow me to accompany him, and he snid he would have no objection. I then made him take an onth not to desert me un the road. I advised him not to travel by Kirong. He, bowever, told me that he was well-known by the authorities on the Kirong road, and that his house wes not far from Kirong, so that there was no canse of fear. Thinking that this man, Dnwá Nangal, was renlly as honest and honorable ns be appeared to be, I lent him

[^14]Re. 100, a aum which he promised faithfully to return on our arrival at Lhásf. At that time I heand that Jung Bahadoor intended to send another vakeel to Lhasá in place of the one alrendy there, and I was told that this would be the best opportunity afforded of getting to Lhásá. We then decided that my brother, who was likely to be recognised by the Kirung official, had better accompany this vakcel, who was about to proceed by the Nílam rond, while I was to travel by the Kirong road with the Bhotiya, Dawd Nangal. Thinking that, if I was unfortunate enough not to ranch Lhásá, my brother might be more auccessful, and vice versa.

We consequently divided the money in my possession, and I made over a few of the instrmments to him, retaining the better servant of the two for myeelf. I then removed to the dwelling of Daxa Nangal, and, preparatory to starting, altered my dress to one adop ed by the Ladakis, and added a tail of hair to the back of my head. All my arrangements being completed, I requested Dawa Nangal to delay no longer. Whereupon he advised me to statt, in the company of one of his men, and promised to join me, either on the rond, or at Shábro village, as pork was likely to detain him for four or five days at Káthmándû. We started from Kathmándû on the night of the 3rd June 1865, and arrived, after travelling for four miles, at a village naned Dharamtalli.

Resuming our march the following morning, we arrived at Batuata Páwá. On the 5th we arr wed at Sundriphedi. On the 6th we halted at Tirsuli bridge. On the 7 th arrived on the bank of the Bitrawati stream. On the 8 th at Dhebung Páwá. On the 9 th we continued our stay at Dhebung Páwá, in consequence of rain On the 10th we arrived at Bekuti village. On the llth we halted. From this village, all the way to Raswagarhi, the inhabitants of the country are Bhotiyns. On the 12th we arrived at Gurrang village. 13th at Dninglang, where I fell ill with fever, and continued there in that state for six days. On the 20th, after my recovery, we marched to Shábro village. Here the servant of Dawí Nangal, who accompanicd mo thus far, mentioned to Dawá Nanga!'s family that I was a friend of Dawá's, and that it was the request of the latter that they should shew me kindness. I was hospitably received and lodged, but after some days I began to feel uneasy at Dawá Nangal's long delay. I mentioned my anxiety to his family, and, in compliance with my request, they sent a messenger, asking the cause of the delay. Dawás answer wns that press of work would keep him still longer at Káthmándú, but that he might be expected at Shábro within ten or twelve days. I now concluded that Dawa intended to play me some trick, and this suspicion gave me great anxiety, and induced me to visit Dawá's uncle; he was the chief person of Shíbro village, and possessed great influence. I asked his advice as to what was to be done in my perplexity, for to return to Káthmándû was not my intention, and to procced onward to Lhásá was not in my power, in consequence of the prohibition of the rond officials. He said he felt for me, and would give me a passport to Kirong, as also a letter to Davá Nangal's brother, who had just returned from Lhúsá to Kirong, and who being a just and good man, would return me the moncy lent to his brother, and also arrange for my anfe journey to Lhású. Acting up to his promise, he gave me a passport to Kirong, and the letter to Dawá's brother. He tilt ci in his letter that I was an honest man, going to Lhásá on commission for the purchase of horses, and that my claim of Rs. 100 against his brother was just, also mentioning that he would stand security for my good conduct to Lhása, and requesting him to arrange for my journey to that place, and if the Kirong officials required it, even to stand security for me.

Starting on the 6th July, accompanied by a relative of the Shábro official, I reach Temuria. On the 7th I arrived at Pemanesa, where, as on the first occasion, the officials atternpted to stop me, but the person who accompanied me from Shábro opened the way, and in the evening of this same dny we arrived at Kirong.

Kirong is a small town, possessing from fifteen to twenty shops (nome kept by Nepalese and anme by Bhotiyas, who sell a variety of articles). Kirong has a fort and a good sized temple. Its population is estimated at from 3 to 4,000 souls. Rice is imported, and salt exported. Three crops are raised anoually. Wheat and barley are sown in October, and ripen in June. Another description of barler, called Ne , is sown in July, and ripens in Octoher, and two other grains (called in these parts Phápar and Sarso) are sown in May, and ripen in September. A number of ediblo herbe are cultivated. On arriving at Kirong, I lost no time in seeing Dawá Nangal's brother, by name Chûng Cha, and after offering a few trifing presents, explained my business with him. He promised me that all in his power would be done to enable me to travel onwards to Lhása, but, as regarded the money, he could not refund it, as his brother was a bad man, and it was not his intention to pay his debts. For four dnys after this intervicm, the chief official (Jongpon) was hury, and could not attend to my affairs, but on the fifth day I obtained a hearing from him, and urged my request to be permitted to travel on. He told me, with all my atrong recommendations, he would not wait a moment longer to grant me leave to travel, had tharo not been a
hgher official than him at Dhingri Ghangá who might obiject, but thut he would send word to the chief official at that place (eight days' journey distant), and if he granted my request, no further obstacle would present itself to my travelling to Lhásá. He also mentioned that the only thing he found not right was, that no Bisahiri truvelled by this road at this time of the year, and this might be one of the rensons which mirght induce the chief official at Dhingri Ghangá to negative my request. A messenger was sent bearing a letter from the Firong to the Dhingri Ghangá official, and after fifteen or sixteen days, on the 26 th July, the answer was received. The Kirong official was ordered to send me back to Nepal, and on no account to allow me to trivel on towards Lhásá, for had I been going to Lhásí for horsee I would not have taken this route, and, had I been a Bisalhiri, the route to Lhásá I should have adopted was by Mansárowar, and not this. Un hearing the decision of the Dhingri Ghangá chief, 1 implored the Kirong chicf to permit me to travel to Pati Nubri, to see my countrymen vid Lá-Jok Tûmbá mountain and KadángChûm, but he hesitated, and said that should he permit me to go there, and should I thence proceed on to Lhásd, and the news of my arrival at the latter place reach the ears of the Dhingri Ghangá chief, then he would forfeit his all, and perhaps be murdered, for disobeying orders; he, however, sent a man with a letter, urging this fresh request of mine, to the Dhingri Ghangá chief. The messenger was dispatched on the 29th of July, and returned on August 10th, bearing the order from the Dhingri Ghanga chief to make me give security for my good conduct, before I was permitted to travel to Pati Nubri. On learning this, I returned to Shábro village, and with a great deal of persuasion and many entreaties induced the chief of the village, Chûng Chû, to enter into security for me. The wording and sense of the security was, that should I, on being permitted to travel to Pati Nubri, break through my promise not to visit Lhásá within this year, then he, Chûng Chû, would submit to the heaviest penalty which the Potolah rajah might think fit to impose on him. Chûng Chû, after doing this much for me, made me give him a declaration to the effect that, should I be found in Lhása within this year, then it would be at the penalty of the loss of my life. This deolaration was written out by the Kirong official, and I subscribed my name and seal to the document. This did not appear entirely to allay the suspicion of the Kirong official, and to guard against any wrong-doing on my part, he directed that I should be accompanied by his men from stage to atage, and they were ordered to bring back a letter from me on my arrival at Pati Nubri.

Auaust $13 t h$.-I left Kirong, and arrived at Rákmá village. $14 t h$.-Arrived at Thotang village, and halted there the following day. 16th.—Arrived at Nûn village. 17 th. -Crossed Tai-Jok Tumbá, nud arrived at Kolûng Chuksă. 18th.-Arrived at Joñká-hil village. 19th.-Arrived at Chartan-Phuk-khar village. 20th.-Arrived half way up Lá-Chumu-phur-phur mountain. 21st.-Arrived at a halting place; the road to this place from the last was very bad. Tradition has it that a priest rose to heaven on winge from the top of this mountniu, hence its name. $22 n d$. -Arrived at Namdûl village, where I met Chûmik Dârji, the brother of the man who I said lived at Pati Nubri, and to whom I told the Kirong chief I intended going. $23 r d$.-At Lue villuge.

24th.-At Bäbuk village, where I saw Thele, from whom the messengers carried back the letter as ordered by the Kirong official. At this place a plant called Nirbisi, or Jadwar, grows wild very abundently; ite root is held in very great esteem throughout India, ns possessing great healing power when applied to cuts, scars, bites of venomous serpents and insects. Bābuk is a large matt for the exchange of goods; Bhotiyns from all parts frequent it. Salt, wool, felt, and burax are brought here from Tibet, prior to being carried into Nepal and adjacent territorice, while tobacco, rice, grain, cloth, copper plates, \&c., are brought from Nepal, prior to being onrried into Tibet to Tadúm, Nikú, H㐅̌pchäu, Labrang, and all other large places. From Káthmándî to Lue village jungle and forest was generally abundant, but at this place there was none visible, and hence to Lhásá the mountain sides were very bare and rocky. I learnt that, on the 25th August, Báro Thele Durchn, with a large party, and a great number of yaks (about 200) laden with goods, intended to start from this place towards Tadúm. Having told these people that I was a Bisahiri (a countryman of theirs), I was held in great favor with all, and consequently received no opposition to my wish to accompany thern; we accordingly started, and arrived in the evening at Galá Sátang camp.

26th. -We crossed the Galá mountain, which forms the boundary between the Lhásí and Gurkha territorics, where I took thermometrical observations, and after passing Snag-jomba village, we arrived by evening at Somnth cump.

27th.-Crossed Gñolé mountain, nad arrived at Báro Dhuksum camp. 28th. -Halted nt Báro Dhuksum. 29th.-Arrived at Zángra grazing ground, at that time covered with herds teuded by men. 30th.-Arrived at Talla Labrang. 31 at. -Halted at Talla Labrang.

Sfiptemariz 1at.-Artived at Yákéu. 2nd.-Arrived on right badk of Bralımaputra river, at

Relé monastery. 3rd.-Arrived at Muna Gbát on bank of river, where boats formed of a framework of wood, covered with leather, convey people and goods across ; on this occasion the boat was lost with three people in my presence, and so I returned to Káu. 4th.一Arrived at Jangtha grazing-ground. 5th.-Arrived on right bank of Brahmaputra at Likche monastery, situated on a low hill. 6th.-Crossed the river by ferry at Likche, and arrived at Tadúm monastery.

I was frequently asked who I was by the inhabitants, and I always said that I was a Bisahiri merchant, called Khûmû in these parts, and had purchased a quantity of Nirbisi* root at Pati Nubri and Muktinäth, which I had sent on to Mansarowar by another route, and had come here merely to worship. The inlanbitants told me that the road from hence to Lhása was infested by thieves and dacoits, and that a journey by a small party was attended with great danger.

The Maharajuh of Kashmir sends a merchnnt with a great quantity of goods to Lhásé once in two years. Hearing that he was to be sent this year, it occurred to me that I had better try to accompany bis party. The merohant sent is called Lopohak, and, by the orders of the Lhásá rajah, is shown great attention, and treated with great distinction, as he passes along the road. The rajah of Lhásí sends a merchaut, called Jang Chongpon, into Ladák once a jear.

On the 8th of September a traveller came into Ladák from Gartokh, and on questioning him I was delighted to hear that the merchant (Lopchak) would be here within thirty days. I accorlingly rented a house, and made up my mind to wait, and to avoid suspicion pretended that illness prevented me from joining the party on their way to Mansarowar. Grain and food generally, being imported, are very dear. Graiu is not raised at all at this place. Tadúm possesses a large monastery, surrounded by eight or nine post-houses (Turjams). At this place there are very extensive plains, stretching to the east seven milea, and in width about four, to the west fifteen miles, by about fifteen in breadth.

Ocrober 2nd.-The merchant's head man, named Chiring Nurpal, accompanied by about twelve men and seventy laden yaks, came into Tadúm this day. On his arrival I sent for him, and made friende with him. I told him what I had already told all at this place, and asked him to let me accompany him to Lhásá, bs the season had advanced, and to return to Mansarowar was nearly impossible. He, without hesitation, acceded to my request, and so we started the following day. 3rd.-Arrived at Thuku carp.

4th -Arrived at Siri Kárpo camp. 5th.-Arrived at Niku Tarjarn, where Chiring Nurpal dismissed the coolics from Tadún, and engaged fresh men. 6th.—Arrived at Jagûng camp. 7th.-After crossing a lirge river called Chartá Sángpo, we arrived at Jalûng camp.

8th.-Marching along the bank of the Chákí Chû river, wo arrived at Sarkájong town. This place is presided over by two officials (Jongpons) residing at Sar-jong and Nub-jung, who questioned Chiring Nurpal as to who I and my servants were. He told them that we were his countrymen and servants. Nothing more was said by them on bearing this, but I was very much troubled in mind, thinking that, should I be discovered at Lhísí, I would to a certainty forfeit my life ; and another subject was a sourco of great uneasinces to me, viz., that I was fast exhausting my funds; I, however, determined to accompliah my design of seeing Lhásá. I continued my route-survey, and took observations for latitude at favorable moments, wherever I could. Grain is not mised nt Surkíjong, but is brought here all the may from Kirong and Jonkfijong. Chiring Nurpal was very kind to me, and I, in return, told him that when we pot back to Mansarowar, he need only ask me for whatever he wished to have it granted. Coolice were changed at Sarka-jong. 9th.-Arrived at Nágüliug camp. 10th.-Arrived at Chomûkulá Tarjam; coolies nad yaks were changed. Halted on 11th. 12th.-Arrived at Tarchunk canip. 13 th. - Arrived at Nangbś Yako camp. 14th.-Arrived at Rain camp. 15th. -Arrived ut Sang-Sang Gyado Tarjam, a mud house, where coolice and yaks were changed. IGth. - Arrived at Ge camp. 17th.-Arrived at Sang-Sang Knu 'Tarjam, a mud house, there is, besides the alove, one other bouse of mud belonging to a jemadar; coolics and yaka were changed. 18th.-Arrived at Kûkap camp. 19th.-Arrived at Rálung camp. Cultivation is seen from this place onwards, and willow trees make their appearance here also; from Tadúm to this place there are nu signs of cultivation, and the population is very acanty.

20th.-Arrived at Nábring Kháká Tarjam, to the N.W. of which place lies a lake eight miles long and three miles in breadth. On the bank of the lake, and N.E. of this village, is situated Nábring village, ruled by a Jongpon (an official). The yaks between Nábring and Lháá are very amall, and the goods (which from Tadún had been carried on large jaks) were at Nábring trangferred to asses.

[^15]21st.-After passing a small lake called Láng-cho-Gonok, we arrived at Barkhá village. The water of this lake is very selt, and is reported to be 162 feet in depth. The length of this lake is four miles, and brendth two miles.

22nd.-After crossing the Brahmaputra hy ferry, we arrived at Janglache town, which has a very fine monastery, and a strongly built fort, situated on the top of a small hill. They call a fort in these parts khar.

A number of shops are kept by Nepalese. I was informed that the Kirong and Dhingri Ghangi road passes through this place. We halted here on the 23 rd, when we were joined by a second portion of the Ladák merchant's meu aud yaks (105) conveying goods.

24th.-Continued our stay at Jangláche town. From this town to Shigátze city goods and men are frequently transported by boats covered with leather, the river being wide and navigable, but we preferred going overland, and so continued our journey.

25th.-Arrived at Táshiling village. 26th.-Arrived at Phuncholing village, which is ruled by a Jongpon. There is a very well-built monastery in this village. At this village the river is spanned by a bridge, formed of iron chain and rope, called chakoam.

27th.—Arrived at Jilong village. 28th.—Arrived at Chakri village.

29th.—Arrived at Digarcha, or Shigátze, city. We took up our quarters at a scrai (called Kunkhang in these parts), built by the government. At N.W. end of the city, on a low hill, stands a strong fort, called Gang Már Jung, which, as tradition has it, was built by a Deo. To the south-west of the city stands a very well-built monastery, called Tashilumbo, surrounded by a wall abont one mile in circumference. Numerous houses and temples rise within this enclosure; four of the larger temples amoug these are superior to the rest, and have gilded spires.

The idols in these temples are studded with precious stones, gold, and silver. There are 3,300 priests in this monnstery, the chief being the Great Lámá, called Panjan Ringbo-Che, considered throughout Tibet as an incarnation of the Deity, who can read the thoughts of men, aud who is supposed never to die.

We formed a small party, and on the lat of November went to do homage to Panjan Ringbo-Che, and were conducted into the presence of a boy eleven years old, seated on a high throne covered with rich silks. He was surrounded by a number of priests, standing in reverential attitudes, and bearing the insignia of their calling. We uncovered our hends, and made a low obeisance, aud then presented an offering of pieces of silk. Panjan Ringbo-Che then placed his hands on each of our heads, and beckoned to his priest to have us seated. Up to this time he had preserved a profound silence, hut on seeing that we were seated, put us only three questions (as he is wont to do to every worshipper), viz. : 'ls your king well γ ' 'Is your country prospering γ ' and 'Are you in good health r The priest then placed a amall strip of silk round each of our necks, and from a silver kettle poured a little tea into our cups, and then disinissed us.

The city of Digarcha is three-quarters of a mile in length, and half a mile in breadth. Northeast of the city, distant three-quurters of a mile, situated on the left bank of the Pentinangehú stream stauds a monastery, called Kongkuling, in the centre of a garden. A market (bnzar) is daily held on the space called Thom, between the city and the Tashilumbo monastery, where every saleable article is exposed throughout the dty, the vendors retiring to their homes in the evening.

The population of the city is estimated at 9,000 souls, exclusire of the 3,300 priests. The earth here is rich, and yiclds fine crops of grain. The city is ruled by two Depons, one residing at Khámk village, and the other at Rimu villuge, but two Jongpons (inferior officers) are obliged to take up quarters in the city.

A force, consisting of 100 Chinese and 400 Bhotiya soldiers, is quartered here. To the sonth of the city, and distant about fifteen miles, is situated a hill called Mao-mi, where gold is said to be found, but a strict order prohibita the people from working it.

Novembar 16th.-The Knshmir Maharajnh's merchant*, for whom we were waiting, came in on

[^16]this day, and I waited on him with n few presents, requesting to be permitted to accompany his men, as I had done from Tadúm. I told him the story of my illness, and how it was that I came with his serrants. He anw no olyjection to my contimuing with his men, and promised to assist me at Lhásá. I took star observations for latitude at this place ns often ns I could.

28th.-The Nepalese ngent (vakecl) at Lhásá, who was recalled by Jung Babadoor, arrived at Digarché city on this day, and I was sorry not to discover my brother among his followers.

December $22 n d$-_Left Dignrchá city, and marched to Giáng villnge. 23rrd.-Arrived at Penájong town, governed by a Jongpon, who resides in the fort. 24th.-Arrived at Tákehe village. 20th.-We arrived at Gyangze city, which is about the size of Dignrchá, and has a fort on a low hill in the heart of the city, and also a large gilded temple. The city is ruled by a Depon, assisted by two Jongpons.

A force, consisting of 50 Chinese and 200 Bhotiya soldiers, is quartered here. The boundary between the Lhaisia and Loh (Bhootan) territories is three days journey from Gyangze. Rice and tobaceonre imported from Bhootan, while wheat, flour, barley, oil, radish, pease, ghee, produced in the place, are soll very cheap. Very fine crops are raised here, although it appeared to me to be higher above the sea level than either Digarchá or Lhásá. The following are the names of threc different descriptions of woullen cloth manufactured in this city, for which it is famous, viz., gethó, nambu, chuktu, purik nambu, this last being very supcrior. It is also the sent of the manufacture of a kind of small bell, called yarká, with which they udorn their horses. To the south-west, north-west, and south-east of the city are plains stretching from six to ten miles, through which the Penánangchú stream flows. At this time of the year the river becomes frozen, and men pass over on foot. We started from hence on the 28th. 28th.-Arrived at Gobzi village. 29th.-Arrived at Rálung village. 30th. -After crosaing Kbarolá mountain, we arrived at Zárá halting place. 31st.-Arrived at Nanganche-jong, a village on the Yamdokcho lake, with a fort on 2 small bill.

Jandart 1st, 1866. -Arrived at Piáhtejong, on the bank of the Yamdokcho lake. Its small fort is situnted so close to the lake that the water washes its walls.

2nd.-Marching nong the bank of Yamdokcho lake, we came upon a band of robbers. One of them took hold of my horse's bridle, and told me to dismount. Through fear, I was on the point of resigning my horse to him, when a Mahommedan who accompanied me, raised his whip ; whereupon the robber drew a long sabre, and rushed on the Mahommedan. Taking advantage of this favorable moment, I whipped my own horse forward, and as the robbers could not catch us, they fired on us, but without effect, and we arrived at Demálung village all safe.

The Yamdokcho lake from this point stretches to south-enst about twenty miles, and then turns west. The breadth of this lake varies from two to three miles, and it is said to be very deep. In the centre of the lake stands a hill, at the foot of which are situated a number of villages. The circum. ference of the lake is about forty-five miles; it is crossed in wicker boats covered with leather. We halted at Demálung this day, the 3rd, to procure yaks and coolies.

4th.-After crossing Khambálá mountain, we arrived at Khambá-Bárchi village, situated on the right bank of the Brahmaputra river, and taking bont from bence, we were rowed down the strcam to Chusul village, passing Chaksam Chori village, which is situated on the right bank of the river, at foot of hill, nud alongside an old bridye (formed of iron chain and rope), which owing to its insecurity, is seldom or never used, the ferries being preferable.

The Khambála mountain forms the boundary between the two districts Oo and Chang, from Khambálá west to Kálí mountain being the Chang, and from Khambálá east to Chari being the Oo district. Chusul Jong is ruled by a Jongpon. On the bank of the river, situated on a low hill, stands a fort. We stayed here three days.

Bth.-Arrived at Chábonang village.
9th.-Marching along the right bank of the Kichu Sangpo river, we arrived at Netang village. The Kichu Sangpo river comes from the direction of Lhisá, and falls into the Brahmaputra at Chusul villuge. The Brahmaputra from thence flows cast.

10dh.-We arrived this day at Lhisá, and, soon after my arrival, I engaged two rooms in a building called Dhiki Ralidan Tashilumbn-gi-K ham Sumbí. One of the rooms was well ndapted for taking my atar ulaservations from within. I had been here some ten days, when the Lopelak's men, my late compunions,

XXIII
told me they were going to visit the Goldan monastery, and asked me to go with them. I accordingly left Lhásá in their company on the 21 st, and arrived at Sárá monastery, distant some three miles only from Lhásá, at the foot of the Tatiphû mountain. The circumference of this mountain is little more than one mile. Numerous temples, with gilded spires, and of all sizes, are seen in the inclosure. The idols within are studded with gold, silver and precious stones. They differ in size and hideousness, some having horns, hut the limbs and lower portion of the figures are generally those of men. I was informed that there were 5,500 priests in this monastery.

22nd.-Starting this morning from Sárá, we arrived late in the evening at Dák Yárpá monastery, situated half way up a hill. Many temples are to be seen here also, although the number of priests is not more than a dozen.

23rd.-Arrived at Bumtod.
24th.-After crossing the Kichu stream, we arrived at Goldan monastery, situated on the summit of a low hill. The circumference of this monastery is about three-quarters of a mile. There are numerous well-built temples, with idols much the same as those at Súrá. It is reported to be a very wealthy monastery, and is occupied by 3,300 priests.

25th.-Returning to Lhásá, we arrived at Nángrá village.

26th.-Reached Lhásí. It was my wish now to follow the course of the Brahmaputra river, but I was informed that, unless I went with a well-armed party of at least a dozen, it would be dangerous to proceed.

The city of Lhásá is circular, with a circumference of two and a-half miles. In the centre of the city stands a very large temple, called by three different names, viz., Máohindrínáth, Jo, and Phokpochengrá. The idols in it are richly inlaid with gold and precious stones. This temple is surrounded by bazars and shops, kept by Lhásá, Kashmiri, Ladáki, Azimabad, and Nepalese merchants, a number of whom aro Mahommedans. Chinese tradesmen are numerous here also.

The city stands in a tolerably level plain surrounded by mountains, the level or open ground extending about six miles on the east, seven on the west, four on the south, and three on the north. At the northern end of the city there are two monasteries, called Mûrû and Rámoche. At the north-west corner stands the Chumuling monastery. At the west end the Tankyaling monastery. The monastery called Kontyaling is about one mile west of the city, at the foot of a low isolated hill called Chápochi, which has a house on its summit. About three-quarters of a mile west of the Rámoche monastery there is, on a low hill, a large and strong fort called Potoláh, which is the residence of the Lámé Gûrû, who is also called Gewár. ing-bo-che, his head minister being generally colled rajah. The fort is one and a-half miles in circumference, and 300 feet above the surrounding level; steps lend up to the fort on every side. The village Jol lies under the fort. Four miles west of the city stands the Debaug monastery, at the foot of a hill ; it is occupied by 7,700 priests, who are held in great veneration by all classes of the Lhásé people. South of the city, and distant three miles (beyond the Kichu Sangpo river), is situated the Chochuling monastery. I accompanied the Ladák merchant, called Lupchak, ou the 7th of February, to pay homage to the Gewáring-boche (the Great Lámé of Tibet) in the fort, ascending by the southern steps. A priest came out to receive us, and we were conducted into the presence of the Gewáring-bo-che, a fair and bandsorne boy of about thirteen years, seated on a throne six feet high, attended by two of the highest priests, each holding a bundle of peacock feathers. To the right of this boy, and seated on a throne three feet high, was the rajah Gyálbo-Khuro-Gyágo, his minister. Numbers of priests in reverential attitudes were standing at a respectful distance from thom. We were ordered to be seated, aud after making offeriugs of silks, sweets and money, the Lámá Gûrấ put us three questions, placing his hand on each of our heads: 'Is your king well \boldsymbol{r} ' Does your country prosper η ' and 'Are you in good health \boldsymbol{r}. We were then served with tea, which some drank, and others poured on their heads, and after having a strip of silk, with a knot in it, placed by the priests round each of our necks, we were dismissed, but mauy were invited to inspect the ouriosities that were to be seen in the fort. The walls and ceilinge of all the chief houses in the fort, and all the temples that contained images of gold, were covered with rich silks.

The Lámá Gûrû is the chiof of all Tibet, but he does not interfere with state business. He is looked upon as the guardian divinity, and is supposed never to die, but transmigrates into any body he pleases. The dead body from which the Lámá Gûrí's soul has departed is placed in a gold coffin studded with the finest gems, and kept in the temple with the grentost care. The belief of the people is that the

XXIV

soul of one Lámá Gûrâ is privileged to transmigrate thirteen times．The present Lámá Gârd is now in his thirteenth transmigration．Churtans are placed over the coffing containing the Lámás＇bodies，and it is said that these dead bodies diminish in size，while the hair and nails grow．

The rajah，or gyalbo，is next to the Lámá Gûrû in rank，below him there are four ministers，called kaskak，who conduct all state business，under his orders．The Chinese vakeel at Lhásá，who is called amban，has the power of reporting against either the rajah or the four ministers to the hing of China， and，if necessary，can have them removed from office．

The general belief of all the Tibetans is，that no sooner is the Lámé Gûrû born，than he speaks，and all withered plants nnd trees about his birthplace at once begin to bear green leaves．The moment news gets to the Lhásá court of such an occurrence，then the four ministers repair to the house，in order to ascertain the truth by the following method：－Articles of all descriptions are placed before the child，and he is requested to tell which belonged to the late Lámá Gúrû，and which did not．Should he be able to select from the articles put before him such of those that belonged to the Lámé Gûrû，then he is pro－ nounced to be no impostor，and is forthwith carried away to the fort of Potoláh，and placed upon the throne ns Lámá Gârû．

The Mahommedans of Lhásá gave me the following account as to the selection of the future Lámá Gûrû ：－From the day of the death of a Lámé Gûrû，all male births are recorded by the Lámás about the city，and the ministers are secretly informed of them．Names are given to the children，and on the thirtieth day aftor the decense of a Lámá Gûrû́，slips of paper，each bearing the name of a child born within the month，are placed in a vessel ；the chief of the four ministers then draws out one of the slips with a pair of pincers，and which ever child＇s name that bears，he is pronounced to be the future Lámá Gûrú．He is then taught all that is required of bim by the priests，and when they think he has come to years of dis－ cretion，the previously narrated ceremony of the choosing of articles is conducted．The people of Lhás⿱㇒日勺心 are kept in the dark as to this method of adopting a Lámá Gûrû．The Lhásá people are，by strangers， supposed to adopt a Lámé Gûrû，in order to prevent the Government of the country from falling entirely into the hands of the Chinese．

Of all the monasteries in these parts，the largest，apparently，are Sárá，Debang，Goldan，dc．，and occupied likewise by the largest number of priests，but in former days the monasteries held in greatest eateem were Kontyaling，Tankyáling，Chumuling，and Chochuling；and on the death of the Potolíh rajah the successor was chosen from one of these four monasteries，while now he is chosen from the Debang monastery only．The reason that the Potolah rajah is not selected from one of the four monasteries， but only from Debang，is because，not very long ago，Sátá Safáde，allied with the Debang priests（7，700）， and also with the people，and aided by the Chinese vakeel，managed to remove the then reigning rajah Gjalbo Riting，from the throne，and drove him to Pekin，where he died shortly after．Sátá Safáde then assumed the position of rajah，and ever since the recognised heir to the Potolah throne has been the head
Lámá of the Debang monastery．
 river，stands a monastery called Same，the sent of the Jam Rajah，who is believed to possess the power and authority to punish or reward the souls of departed men．The state treasury of Lhasá is also at this place，Sáme，and，on the occasion of a war，the four ministers repair thither，and after a little cerenony， receive the amount they solicit，with an injunction to return the same within a certain period．Within forty miles east of Sáme monastery，and on the right bank of the Brahmaputra，is situated Chotang city， rivalling in size the city of Digarcha．The Brabmaputrn river flows from hence in an easterly direction for a distance of one hundred and twenty miles，and then flows due south．

I observed that there was but little order and justioe to be seen in Lhásá．
The new year of this people commences with the new moon appearing on or about the 15 th of Febriary；they call it Lohsar．On New Years＇Eve an order from the court goes round to have every house in the city cleaned；the houses are swept and whitewnshed，and the streets are cleaned．On the day following each household displays as many flags，\＆c．，from the house－top as it can afforl．Throughout the day and night singing，dancing，and drinking are kept up．On the second day of their new year all the people of the city assemble before the Potoláh fort，to witness the following feat，performed generally by two men ：－A strong rope is fatened from the fort walls to strong rivets in the ground， 100 yards distnint from the base of the fort．The two unfortunate men then have to slide down this rope，which very often proves fatal to them ；should they，however，survive，they are rewarded by the court．The Límá Gîríl is always a witness of the pertormance from the fort．

From the commencement of the new year, whoever pays the highest sum is considered the judge of the rajah's court, and for tweuty-three days he exercises his authority in the most arbitrary manner possible, for bis own benefit, as all fines, dec., are his by the purchase. The purchaser of auch authority must be one of the 7,700 priests attached to the Debang monastery; the successful priest is called Jalno, and announces the fact through the streets of Lhásá in person, bearing a silver stick.

The priests attached to all the temples and roonasteries in the neighbourhood assemble in the fort, and offer homage. 'lhis assembling of the priests is called Molun Chumbo, and the bolidays go by the same name. The Jalno's men are now seen to go about the strects and places, in order to discover any conduct in the inhabitants that may be found fault with. Every house is tased in Lhásii at this period, and the slightest fault is punished with the greatest severity by fines. This severity of the Jalno drives ail the working classes out of the city, till the twenty-three days are over. Thie profit gained by the Jalno is about ten times the purchasc-money. During the twenty-three days all the priests of the neighbour hood congregate at the Máchindrínáth temple, and perform religious cercmonics. On the fifteeuth day of the new year all the priests, assembling about Máchindránáth temple, display hundreds of idols in furm of men, animals, trees, \&c., and throughout the night burn torches, which illuminate the city to a great distance. The day on which the authority of the Jalno ceases, the rajah's troops parade through the streets, and prochnim that the power of the rajah has again been assumed by him. T'wenty-four days after the Jalno ceases to have authority, he again assumes it, and acts in the same arbitrary manner as on the first occasion, for ten days, after which authority is once more assumed by the rajah. These ten days are called Chokchut Molarn.

On the first day the Lámás all assemble, as before, at Máchindránáth temple, and after a religious ceremony, invoke the ussistance of their deities, to prevent sickncss, dc., among the pcople, and, as a peaceoffering, sacrifice one man. 'This man is not killed purposely, but the ceremony he undergoes ofteu proves fatal. Grain is thrown against his head, and his face is painted half white, half black.

On the tenth day of this vacation, all the troops quartered at Lháá march to the temple, and form line before it. The victim, who has his face painted, is theu brought forlh from the temple, and rece:ves small donations from all the populace assembled. He then throws the dice with the Jolno, and if the latter luses, it is said to forebode great evil, and if not, and the Jalno wins, then it is believed that the victim, who is to bear the sirs of all the inhabitants of Lhásá, has been permitted by the gods to do so. He is then marched to the walls of the city, followed by the whole populace, and troops hooting and shouting, and discharging volleys alter him. When he is driven outgide the city, then people return, and the victim is carried to the Sáme monnstery. Should he die shortly after this, the people say it is an auspicious sign, and if not, he is kept a prisoner at Sámo monastery for the term of a whole year, after which he is released, and is allowed to return to Lhásá.

The day following the banishment of the man to Sáme, all the state jewels, gold and silver plate, \&e., are brought out from the fort, and carried through the streets of Lhisá, protected by the troops armed, and followed by thousands of upectators. Towards evening everything is takeul lack to the fort, and kept as beforc. The day following, immense images of the gods (formed of variegated paper, on wooden framework) are dragged by men through the city, protected by armed troops. About noon the whole populace, great and small, assemble on the plain north of the city, and publicly carousc, race, and practice with the gun at targets. I was informed that the Molam Chambo and Chokchut Molam vacations, with all the religious ceremonies and observances, were instituted from time immemorinl, but that the business of putting to the highest bid the powers of sole and chief magistrate, dates from the tenth transmigration of the soul of the present Lámé Gûrû.

One crop only is raised here in the year. Seed is sown in April, and the crop cut in September. The grains raisel are Sua, Ne, Do, Doo Sanma, Youkar (barley, another description of harley, wheat, another kind of wheat, peus, and musard). Radish, carrots, onions, potatoes, beans, garlic, and various other edibles are cultivated. There are two kinds of trees, called Chingma and Jawar; but they are not indigenons, and are ouly to be seon in gardens. There is no jungle hereabouts, and excepting one thorny bush, called Sia, the hills are absolutely barren.

A very fow of the rich men's houses are built of brick and stone, all others are of mud. Some few are built of sun-dried bricks. The manufactures of Lhásś are woollen cloths, felt, dc. The anttle of Lhásí are cows, sheep, goats, yaks, horses, asses, \&o.; pigs and dogs are also reared, the latter being a very big animal; there are quantities of domestio cats, mostly black, and a few white and red. Fowls, pigeous, kites, crows, ducks, and pheasants, together with a variety of smull birds, are very numerous. Snakea, reptiles, scorpions, \&c., are not known.

The water supply of Lhásá is from wells, and a tax of two annas on every house is inposed monthly on the inhabitants for the use of the wells.

During the month of December, merchants from all parts bring their merchandise here from China, Tartary, Darchando, Chando, Kham, Tawaug, Bhotun, Sikkim, Nepal, Darjiling, Azimabad nad Ladék). From Chinn, silks of all varieties, carpets und Chinaware. From Jiling, in 'Cartary, is brought goldlace, silks, precious gems, carpets of a superior manufacture, horse-saddles, and a very large kind of Dunba sheep, also valuable horses. Fiom Darchando immense quantities of tea-(Darchando is said to be situated north-east of Lhásí, nud to be distant two months' journey). From Chando city, in the Kham territory, an enormous quantity of the musk perfume is brought, which eventually finds its way to Europe, through Nepal. Rice, and other grain that is foreign to Lhissi, is brought from 'rawang, in Bhotan. From Sikkim, rice and tobacco ; nnd from Nepal, Darjiling and Azimabad, broad-cloth, silks, satins, saddles, precious stones, coral, pearls, sugar, spices, and a variety of Indian commodities. Charas and saffron (késar) come from Ladák and Kashmir. The merchants who come here in December, leave in March, before the setting in of the rains render the rivers impassable. The inhabitants use ornaments of coral, pearls, and precious stones, and occasionally of gold and silver, which are more especially womby women ou their hends. Conts lined with the skins of sheep are generally worn.

During the month of December, at nights and early in the mornings, the mercury in the thermometers sauk below 32°, and during the days never rose over 40° to 45°. The river Kichu was frozen at that time of the yenr, and water kept in the warmest parts of a bouse, froze, and burst the vessels holding it.

The chief divinity worshipped in thie part is Budh.

The food of the inhabitants consists chiefly of salted butter, tea, mutton, beef, pork, and fowls. Rice is not much eaten, owing to its high price, and because it is considered a fruitful source of disease. Other edibles, such as wheat, barley, and kitchen produce, \&c., are cheap.

The current coin of the country is a silver picce called Naktang, two and a-half of which pieces being the equivalent of one rupee. The silver pieces are cut into either halves, or into three pieces, the half pieces are called Chikyah, and one-third of the Naktang is called Karma, and two-thirds of the Naktang piece, called Shokang or Miscal. There is also a large lump of silver, bearing the seal of the Chinese Emperor, the value of which is equal to 333 Naktangs, called Dojah or Kurus.

To the north-east of Lhásá, distant about one months' journey, there is a country called Kham or Nyahrong. Thousands of the inhabitants of this country annually pay Lhasa a visit, some under the plea of wishing to worship, while others come with the ostensible reason of trading, but all really come with the object of robbing and stealing whatever they can. These people are held in terror by all the peaceable inhabitants of the Lhásá territory, who have named them Golok Khamba. Highway robbery and murder are perpetrated by them without compunction. They appear to be exempt from the wrath or punishment of the Lhásá chiefs. The Lhá\&á government never takes notice of any complaints brought against this marauding tribe, and the reason I heard for this silence wns that the Lhása vakeel with government merchandize, on his annual journey to Pekin, has to pass through the territory appertaining to this tribe, and to insure a aqfe journey for these, the government connives at the mischief done by them in the Lháad territory. Another reason I heard was, that, in case of Ω war, this Khamba tribe would render good service.

North of Lhásá, and four miles distant, is situated a long hill, stretching from east to west, reported to contain immense quantitics of silver; but a government order prohibits anyone from working tho metal. The government itself refuses to work the metal, for the general belief is, that the country will be impoverished, and the men will degenerate, should the metal be worked.

A Chinaman, not many years ago, worked a large quantity of silver here, but intimation was given to the government of the fact, and the man was seized, and sent to Pekin, where his hands were cut off. The name given to this hill is Toti-phu. On the summit of this hill is a spring, and a large flat slab of stone called Darga, the seat of the Mahommedan Pir. Another large alab of stone close to this is called Ja Nawaj; it bears the impression of a large hand, said to be the band of a Mahomedan Pir, who lived bere in former days. FThe Mabomedans of Lhásá resort to this place to worship. It is also reported and believed that gold exists in the Toti-phu hill, and near the monasteries Debang and Hamoche, but it is not worked. Gold is however worked to a very slight extent near the monasterics by the priests, but should they, in their search, discover a nu rret of large size, it is immediately replaced in the earth, under the impression that the large nuggets have life, and germinate in time, producing the small lumps, which they ure privileged to aparch for.

To the north-east of Lhásí, and one and a-half montha' journey from it, at Sarka or Thok, gold is extracted in large quantities, there being no prohilition as to working it. This gold is carried to Lhásá, Gartokh and Digarcha. In this country no grain is raised near Sarka, the gold-diggers_barter the metal for grain, \&c., brought by merchante.

The strength of the standing force in Lhásí is 1,000 Bhotiya and 500 Chinese soldiers, armed with long fint guns, nad of late seven small pieces of ordnance have been introduced. During the war between the Goorkhas and the Thása government, in 1854 , an order was given for ia census of the inhabitants, and, exclusive of the military and priests, Lhásá was found to contain 9,000 women and 6,000 men. The reason of this preponderance of females over the males is easily accounted for, in consequence of tho large uumber of males who become priests, who are compelled to vow celibacy.

The Nepalese residents of Lhásá, though believing in the same divinity, Budh, as the Lhisś people, yet differ from them in many minor points. Another reason of the acanty population of Lhásá is traced to the custom of one family, consisting say of four or five males, who cohabit with one woman.

Regarding the disposal of their dead, the Lhása people of the poorer classes bind the corpses tightly with rope, and place them erect against the inner walls of their honses for two or three days, while the richer and well-to-do classes detain the corpses in their houses for a length of fourteen dars; efter which time priests are invited, who pretend to read from their ritual the manner in which these corpses are predestined to be disposed. Sometimes their decision is to cut the corpse into pieces, and scatter the fragments to the birds and beasts of pref, and sometimes to bury them. The reason assigned $h y$ them for detaining the bodies springs from the belief that they may become demons if disposed of without the blessings of the prieste.

The inhabitants of Lhásá report that the ready cash possessed by the government of Lhása, and deposited in the Potolah fort, equals, if not exceeds, the wealth of the whole world, but I was of a contrary opinion, as I learnt that, during the war between Lhásá and the Goorkhas, in 1854, the Lhásí government had to bring two lacs of rupees from Sáme monastery, to conduct the war.

Having mado such a long stay in Lhásá, I had completely exhausted my funds, and was driven to teach some Nepalese merohants a little Hindee calculation, for my support, since I could get no credit in the place, and no opportunity to return to Nepal offered itself. I was one day questioned as to who I was by two Mahommedan merchants of Lhásuí, who appeared to be of a better class than the generality of the people. I told them (as 1 had told every one who asked me the same question) that I was a Bisahiri, but they contradicted me familiarly, and said that I, they were convinced, was no Bisahiri, and at last they forced me to confess the truth, but solemnly awore to secrecy. By this confession of mine I was enabled to borrow of them a sum of money, on pledging my watch, and after borrowing another sunall sum, I mado up my mind to start from Lhásí by the first opportunity that presented itself.

I was at about this time very much alarmed, by seeing the Kirong Jongpon in the streets of Lhásín one day; and I was still more alarmed on seeing the sumnary manner in which treachery in these parts was dealt with, in the person of a Chinaman, who had seditiously raised a quarrel between the priests of the Sara and Debang monasteries. Ho was (ou the receipt of an order from Pekin to kill him) brought out before whole of the people, and behealed with very little hesitation. Owing to my alarm, I changed my residence, and seldom appeared in public again.

At this time I learnt that the Ladak merchant, with whose servants I had travelled hither, was sending his party back to Ladák with large quantities of tea, de., that he had purchased. Hearing this, I went to see him, and after making a fow preseuts, preferred my request to be allowed to return to my own country nlong with his party. He assented, and ordered that I should be well provided for, giving his servants injunctions to reccive from me all that I might owe him on our arrival at Mansarowar.

April 21st.--Left Lhasá early this morning, and arrived at eve at Netang villuge. 22nd.Arrived at Chusul. 23rd.-Arrived at Kamba Barchi villgge. 24th.-Crossed Khambálá mountain, and arrived at Piate Jong village. 25th.-Arrived at Nangancho villago. 26th.-Crossed Kharola mountain, and arrived at Ralung village. 27th.-Arrived at Gyangze city; balted here the 28th. 29th.-Arrived at Takche village. 30ch.-Arrived at Pena Jong village.

May lat.-Arrived at Shigátze city; made a stay of six days here, while collecting provisiona for the road. 8th.-Left Digarcha in the morning, and arrived at Natang village. 9th.-Arrived at

Sabgeding village. 10th.-Arrived at Silkn villnge. 11th.--Arrived at Tancheding village. 12th.Arrived at Phuncholing villnge. 13th.-Arrived at Chakdong village. 1-1th.-Arrived at Jangláche town ; halted here ono day, seeling provisions for the road as far as Mansarowar. 16th.-Crossed the Brahmaputra river, and arrived at Singilung village. 17th.-Arrived at Lharcha village. 18th.Arrived at Gnabring Thaka Tarjan. 19th.-Arrived at foot of Rigu 'Tapjang monastery, situated on a hill. 20th.-Arrived at Sang-Sang-Kao Tarjam ; balted here one day. 22nd.-Arrived at Ge camp. 23rd.-Arrived at Sang-Sang-Giado Tarjam. 21th.-Arrived at Ginangbn- Yako camp. 25th.-Arrived at Rakha Thazang Tarjam. 20th.-Arrived at Chomukula Tarjann. 2thb.-Arrived at camp near Gyacho Jheel. 2sth.-Arrived at Sarka Jong. 20th.-Aurived at Tugung camp. 30th.-Arrived at Srikarpo camp, after passing Niku Tarjam. 31st.-Arrived at Thuku eamp.

Jone 1st.-Arrived at Tadúm monastery. 2nd.-Left Tadúm, and after crossing Chachu stream, arrived at Birmalung camp, on the left bank of the Brahmaputra. The Brahmaputra river is called ly the people in these parts by three names, Tamjan Khamba, Machang, and Gnarichu Sangro. 3rdArrived at Tulu camp. 4th.-Arrived at Dhuksuun Tarjan; sheep, goats, yaks and horses are seen in large numbers here ; salt, which is got from Chaba, is bartered here for grain, brought froin Muktinath and Jumla, this place producing no grain. 5th.-Arrived at Demar camp. Gth.-Arrived at Lahro camp. 7th.-Arrived at Thamzang Tarjan ; sheep, goats, yaks, de., are seen here in large numbers, amd salt is bartered for grain brought from Jumla; halted here one day. 9th.-A Arrived at Tha Khabjor; my servant here fell ill, and I was compelled to :sis the assistance of my Ladaki companions for the prosecution of my work. 10th.-Arrived at Gyamzar camp; halted here one day. 12th.-Crossed Mariam La mountain, and arrived at Ugro Tarjan, situated near Gunkyud-cho lake; this lake is about ten miles in length, nud two miles in breadth. 13th.-Arrived at Nukche camp. 14th.-Arrired at Thokchan Tarjan, on right bank of Some Chu stream; halted here nne day. 16th.-Arrived at Sarnis Unia camp, distant half a mile from bank of Mansarowar lake. 17th.-Left Sarnia Unia camp this morning, and travelling fustarrived at Darchan, a large village. Here I met Supia Shopol, an inhabitant of the Kuman district, through whose assistance I was enabled to discharge my debts, which had been accumulating since I left Lhásé. The party whom I had accompanied hither went on to Gurtokh, while I, in company with two of Supia's sons, started for Kumaon. I left my servant, who was ailine, at Darchan, as a security for the fulfilinent of my promise to return and pay Supia all he had lent me. The watch I, however, could not redeem, but told the men who had possession of it to leave it at Gartokh, and that I would eend the moncy to redeem it. 20th.-Left Darchan this moruing, and arrived at a camp, name not nscertained. 21st.-Arrived at Gyanima camp. During the rains Darchan and thin place are reaorted to by many traders, who come here to dispose of their merchandize. 22nd.-Arrived on right lank of Chu Nago stream. 23rd.-Arrived at Thanang camp, and was surprised to see the low hills in the vicinity covered with snow in a way I had never seen before. The rond over Kongribiugri mountain was covered with snow, and rendered quite impracticable, this caused me to journey on to Niti, but even this roal was so much covered with snow, that, on croseing over a hill, I accidentally slipped, and the thermometer I was carrying fell and broke. I left Thazang this same day, and arrived at Ship caup. 2tth.-Arrived at Nukchang camp, on bank of Sakelu stream. 25th.-The Sakchu atrenm was not fordable, ao I travellod alongside it till we arrived at Dongpu village; there I was asked who 1 was; I answered that I was a Bhotiya, like themselses, but they refused to let mo pass, unless I ebowed them ing authority for travelling thither. They told me if I had come from Tagla-Kote, as I raid, to produce the passport of the Jongjon residing there. I told them \mathbf{I} was on my way to Niti, but this did not satisfy them, and so they told me I must be detained till they had reported, and got bark word froin the Daba Jongpon. I was told that whenever the passes were opened, news of the fuct was aent olficially to every village, and that none of the passes were yet open, hence their suspicion of me. On reeing their deternination to stop my further progress, I told them that I had a paseport from the Jongpon of Tagla-Kote, but had forgotten, and left it at Darchan, and if they would not let me pass on, I would return to Darchan. They then informed mo that they would allow me to rcturn to Darchan, but could, on no account, let mo pass for Niti, and with this, I returned three miles by the Darchan road, and struck out by a jungle path over hills, \&c., and arrived at night at Lamlung camp. From Dongpu to this place I was unable to continue my route-survey.

26th.-Arrised at Lapthal camp. Here I aaw four Bhotiya soldiers, who were sent here to stop the progress of Major Brereton. They questioned me as to who I was, where I had come from, and whither I was going; my answer to them was that I had come from Niti, knowing this would notercite suspicion. This village is on the estreme border of tho Lbásí territory. 27 th-Arrived at Khingur camp, where I met Major Brereton's camp. I halted here a portion of the next day, and was very kindly treated by Major Brereton. 2sth. - Arrived at Topi Dhunga camp, where I loft my serfants,
in consequence of one of them haring been taken suddenly ill. 29th.-Crossed Utdhura or Untadhura pass, and thence made my way, through Kumaon and Gurhwal, to Masuri. My eervant Chumbal, whom I had left at Darchan, rejoined me on the road, having quite recovered from his illness.

My brother, who had returned to the British territory some time before me, had been instructed to cross the passes, in order to assist me. I gave him my sextant, and told him to carry a routeaurvey back to Dongpu (where I was forced to leave off), and thence to carry on the route-survey to Gartokb, in order to fix that place, and at the same time to redeem my watch, which the Ladakig had left there for me. My brother was successful in both these objects.

Route－Survey from Nepal to Lhasa．

$\begin{aligned} & \text { 啚 } \\ & \text { 品 } \\ & \text { 花 } \end{aligned}$					Remaris．
168	3600^{*}	\cdots	\ldots	．	In Kathmandû city，near the left bank of the Bish． nomati river．This strenm，after flowing 1,000 paces，joins the Bagrnati river，which comes from the east．Thápáthalí，the house of Jung Bahadur， is on the right bank of the Bagmati，at 1，000 pares from the junction．Patan city，opposite to Thá pathali，is on the left bank of the same strean． The temple of Pashopati Nath is 10,000 pares east of the atation．
			3，000	\ldots	To station 169．At the north end of the Kathmandiu bazar．
169	33130	．．．	1，000	\cdots	To 170．On bridge on the left bank of the Bishno－ mati stream．
170	3430	1，100	．．．	\ldots	Balaji bazar．
		1，000	2，100	\ldots	To Páwé resting place，on right bank of the Bisbno－ mati stream．
171	$360 \quad 0$	1，700	\cdots	\ldots	To n small nala from the N．E．，joins the Biehnomati．
		1，500	\ldots	\ldots	To Dharamthali village．
		600	3，800	\ldots	To station 172.
172	3260	\cdots	1，900	．．．	To Jitpur village．
173	28630	．	1，400	．．．	
174	33730	．．．	500	\ldots	To a amall nale which flows westward．
175	25830	\cdots	1，100	\cdots	To Pawá，or halting place，on the right of the road．
176	$360 \quad 0$	．．．	1，000	\ldots	To station 177.
177	29230	2，800	．．．	\ldots	To Kaharia Páwá，a houee．
		1，300	4，100	\ldots	To station 178.
178	33730	800	．．．	\ldots	To Jaiphal Páwá．
		1，700	2，500	\cdots	To station 179.
179	3150	700	\ldots	D＋	To Rani Páwá．
		3，000	．．．	D	To Birahmanadi village．
		1，000	\ldots	D	To Chowtaria Páwá．
		2，400	．	\cdots	To Sundariphedi，at the base of the hill．Herea nalf from the east，and another from 151° join，and dow towards 315° for 900 paces．

					Remaris．
	－，				
194	3600	1，700	1，700	Slight A	
195	560	800	800	Level	Bhárkû．
196	1630	1，000	1，000	Do．	
197	390	500	．．．	D	Along the left bank of the Gandak river．
		3，600	4，100	Level	Shabrû village，at the junction of the Gandak and Langdong（Khola），a small stream from the N．E． The Langdong Khol is bridged，and a toll is levied on all goods and men passing over．
198	$360 \quad 0$	1，800	\ldots	Do．	Ungal village（emall）．
		600	2，400	Do．	Opposite this point a small stream from the W ．falls into the Gandak，and about four miles up the stream the village of Gúljun is visible．
199	1630	1，400	\cdots	Do．	Here the Gandak is bridged，and on the opposite （ R ）bank of the river is situated the village of Medongpodo．
		700	．．．	Do．	Here a small stream from the \mathbf{E} ．falls into the Gan－ dak．
		2，000	．．．	Do．	Biting village．
		1，800	5，900	Do．	Here a small stream from the E．falls into the Gan－ dak．
200	$360 \quad 0$	1，800	1，800	Do．	Here the Gandak is bridged．
201	3330	1，500	\ldots	Do．	Temuria Bansír or Satang，a large village where tolla are levied．
		200	1，700	Do．	
202	450	1，500	1，500	Do．	A corn－mill．Here a small stream from the E．falls into the Gandak．
203	110	1，500		Do．	A fort called Raswagarhi，built by Jung Bahadoor， stands here．A good－sized stream，naned the Lendichú，coming from the N．E．，falls into the Gandah．This stream forms the boundary be－ tween the Lhásá and the Gûrkha territories．A stone $4 \frac{1}{2}$ feet high and 8 feet in breadth has been erceted here as a boundary pillar；it bears an in－ seription in Chinese characters．
		300	1，800	Do．	Dongkhang（Dhrameala）．
20.4	29230	2，900	2，900	Do．	Along the left bank of the Gandak river．
295	34830	1，000	1，000	Do．	Do．do．
206	3430	－ 300	．．．	Do．	Opposite this point a stream from the W．falls into the Gandak．
		300	600	Do．	Paimánesa，a Policr post Travellersarcexaminedhere．
1	3430	－3，400	3，400	Do．	Along the Gandak．This（station）is identical with No． 206 above．

$\begin{aligned} & \text { 另 } \\ & \text { 苞我 } \end{aligned}$					Remanks．
2	1630	15，200	15，200	Slight A	Thunsiá village．
3	32030	3,000 2，800	5，800	Do． Ascent	A small stream from N．E．by N．flows from henee pa－ rallel to the Gandak，and falls into it about one mile below Thunsiá．
4	2980	1，300	\ldots	Slight D	Kiroñg，a small town．with a lavge temple dedicated to the Saint Phákprichengrá，which stands at the N ．end of the town．A fort called Sharbí（jong） lies to the east，and a place callul Nub（jong）to the west．A house at the N．W．end，the resi－ dence of a Labrong，was the place from which observations for latitude were taken．
		500	\ldots	Do．	A corn－mill，on the left bank of a small stream from the west．
		1，300	\ldots	Level	A brilge across the last mentioned stream．From this two monasteries（Gûnpá）are seen at about four and five miles．
		600	\ldots	Do．	Opposite on the right bank of the Gandak is the village of Dûlbo．
		1，500	\ldots	Do．	Chougdiá village．Opposite which a snall stream falls into the Gandak．
		2，600	．．．	Do．	Jamding village．
		400	．．．	Dn．	Pañg Sing village．
		2，000	\ldots	Do．	Opposite this on the other bank of the Gandak stands the Garú monastery（Giùnjá）．
		2，900	．．．	Do．	On the risht bank of the Gnudak river，which was crossed by a bridge．
		700	．．．	Do．	Mágnl village．
		2，500	16，300	Do．	Half mile from the Gandak river．A good－sized stream comes from the W ．，and pussing this place， falls into the Guadak．
5	3430	1，300	\ldots	Do．	Rakma village．
		800	\ldots	Do．	On the left bank of the Gandak river，which wns again crossed by a bridge called Rakmá Yársam． Tolls are levied here during the months of Sep－ tember and Uetober on all goods taken across．
		3，200	\ldots	Do．	Tildi－fû，nn immense fingnent of rock to the right of the road，bearing inseriptions in Chinese and Lhásá characters．
		1，300	．．．	Do．	On the left bank of the Canduk．On the other bank， and about $\frac{1}{4}$ mile from it，is Ω（ińmici（monastery） half way up the hill side．A small strenm from the E．falls into the Gandak at this point．
		1，400	．．．	Do．	Thotang．The houses of this village are on both banks of the Candik．A small strean from E．here folle into the diundak．

					Remanks.
5	3430	1,700	\ldots	Level	On the opposite bank a glacier is visible, from bencath which a small stream flows into the Gandak.
		700	...	Do.	A small stream from N.E. falls into the Gandak.
		200	\ldots	Do.	On the right bank of the Gandak, which is bridged.
		1,500	...	Do.	A small stream from the N.W. falls into the Gandak.
		100	12,200	A	The ruins of Linde Fort.
6	3330	1,000	\ldots	Level	On the left bank of the Gandak, which is here bridged.
		500	...	Do.	On the right bank of the Gandak, which is here bridged.
		500	...	Do.	On the left bank of the Gandak, which is here bridged.
		1,400	\cdots	Do.	A small stream from the S.E. falls into the Gandok. This stream is the boundary between the two districts Kiroñg and Joñkájoñg.
		2,500	...	Do.	A stream from glacier on the east falls into the Gandak.
		1,000	\cdots	Do.	On the right bank of the Gandak, which is bridged.
		2,100	\cdots	Do.	Sangdá villnge, a stream flowing from W. falls into the Gandak.
-		500	9,500	Do.	A small stream from W. falls into the Gandak. The road to Joñkájoñg and Lhásá follows n northerly direction from this; Joñkájoñg is about 24 miles from hence. Followed the course of this monall stream.
7	2980	4,200	-..	Slight A	At Mûn village.
		7,600	...	Great A	*On the top of Lájúk Thûmbá mountain. Themnometrical observations taken here.
		8,700	20,500	Steep D	A grazing-ground (chûksa). Along the bank of a stream called Bûriá Gundak.
8	2360	400	\cdots	Slight D	At this point n goorl-size stream coming from N.W. falls into Bûriá Gandak.
		3,300	3,700	Do.	Kolung (chûksa) grazing-ground. A stream colled Chike (Chú), from the N.W., falls into the Burií Gandak. From hence a large road crossing a high mountain, distant about 16 miles, leads to rihet.
9	1800	4,600	...	Do.	Chûrtan (temple). A small etream from E. falls into the Bûriá Gaudak.
		1,200	...	Do.	A small stream from W. falls into the Buriá Gundok.
		1,900	...	Level	On the left bank of the Bûria Gandak, which is bridged.

$\begin{aligned} & \text { 品 } \\ & \text { 品耍 } \end{aligned}$					Remargas．
13	2360	1，400	\ldots	D	A smnll stream from N．W．falls into the Buria Gan－ ditk one and a－half miles below．A corn－mill stands here．
		3，500	\ldots	Great 1	On the top of the Lhí Chûmí－phûr－phir mountain near a pile of stones（Lapchá）．Thermometrical observatious taken here．
		600	\ldots	Up\＆Down	Pile of stones（Lapchá）．
		1，100	9，600	D	From this the junction of the Nûbri（chú）and the Bûriá Gandak is visible，the joint stream flurs south．Near the junction is a large village colled Niá，one mile lower the village called Bängsing， and a mile below the latter Tarn village．
14	28630	4，800	\ldots	D	On a small stream which falls into the Nubri lower down．
		1，200	6，000	Level	On the left bank of the Nûbri（chú）river；a small stream falls into the Nûbri opposite this point．
15	3600	1，500	\cdots	Do．	Ráná village；here the stream is bridged，and a rond viâ Niá and Báñgsing leads to Nepál．
		900	\ldots	Do．	A small stream from the E．falls into the Nûbri．
		300	\ldots	Do．	Another stream from E．falls into the Nûbri．
		700	3，400	Do．	On the left bank of the Nubri．
16	3150	1，000	\ldots	Do．	At Bigá village．
		600	\cdots	Do．	A small stream from the N．E．falls into the Nubri．
		1，500	\ldots	Do．	Lûñg village．
		1，900	5，000	Do．	A stream from north falls into the Nûbri．
17	1810	1，500	\ldots	Do．	On the right bank of Nubri，which is bridged．
		600	\ldots	Do．	Kap village ；opposite，on the right bank of the river． distant about half a mile，are the villages of Chnk and Gopá．
		1，800	\ldots	Do．	At this point a large stream，called the Gnola－chú，from the N．falls into the Nutbri．
		2，000	5，900	Do．	A tream from the S．W．falls into the Nubri．
18	30330	3，200	\ldots	Do．	Namdûl villoge，on right bank of Nûbri（chú）．
		300	\ldots	Do．＊	Here a small stream from the W ．falls into the Nûbri．
		3，500	7，000	Do．	Lûiláká village．
19	2810	1，000	\cdots	Do．	The Haman stream from W．falls into the Nûlni （chú），over it is a bridge culled Hamnn（Sambá）．

					Remamis.
19	2810	1,200	\cdots	Level	Shao village ; (small). Immeciately opposite, on the other bank of the Núbri (chú), stands the village of Niñg.
20	27530	3,400	\ldots	Do.	Lue, a large village.
		1,200	6,800	Do.	A small stream from W. falls into the Nabri river.
		4,000	...	Do.	A stream from S.W. falls into the Nûbri river.
		3,000	7,000	Do.	Rne village ; (very large).
21	34830	600	\ldots	D.	To the left of this point, distant quarter of a mile, stands a monastery (Gùnpá).
		1.500	...	Do.	Here a stream flowing from W., and coming from under a large glacier, falls into the Nûbri.
		5,700	...	Do.	On the left bank of the Nûbri (chú) stream, which is bridged. A small strean, coming from a glacier distant about quarter of a mile, falls into the Nûbri here.
		2, 1.00	10,200	Do.	At Bábûk (chûksa) grazing-ground, which is at the junction of the Nûbri (chú) and another large stream coming frem an immense glacier, threefourths of a mile distant, lying west of this point. From this place a road runs in a westerly direction to an importunt place called Muktinath, distant five days journcy. Bábûk (chûksa) is on the right bank of the Nûbri (chú) stream, which is bridged.
22	110	4,000	4,000	Slight A	Here the stream is crossed by a bridge called Dilung (Sambí). This point is on the left bank of the Nûluri (chú). On the other bank of the stream, in a N.W. direction, lies an imnuense glacier about four miles in length, from which a swall stream falls into the Nûbri (chú).
23	3150	2,800	\cdots	Level	(Gyá-la Sáláng, nt the foot of a high mountain.
		3,500	6,300	Great A	On the top of Gyalá mountain. This forms the boundnry between the Lhásá and Gûrkhí territo. ries. Thermometrical observations were taken herc.
24	3330	2,600	\ldots	D	A small stream from a glacier on the W. flows past this point, and falls into another stream one mile distant. This latter strenm, after fowing a long distance in an easterly direction, falls into the Nûbri (chú) near the villuge called Kip.
		2,300	\ldots	A	Near a pile of stones (Lapchí).
		2,300	7,200	I)	At a village named Sañyjímbí, on the right bank of a strenm.
25	3430	3,400	3,400	Level	Sommenth camp ${ }^{*}$, nt the junction of two streams, viz. one mentioned above, and a second coming from the W .

[^17]| $\begin{aligned} & \text { 最 } \\ & \text { 䓅 } \end{aligned}$ | | | | 4 运 | Remaris． |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 26 | 280 | 4，000 | ．．． | Slight A | On the left bank of the stream mentioned ahore， whioh is here joined by a stricam from the N．W． |
| | | 2，000 | ．．． | Do． | A small stream from the E．falls into this strcam． |
| | | 4，900 | 10，900 | Great A | On the top of Gñolá mountain．Thermometrical ob servations were taken at this point． |
| 27 | 2230 | 9，500 | \ldots | D | At a halting place for travellers called Bárûdhuksam， on the left bank of a stream called Shûrtá Sángyo． |
| | | 3，000 | 12，500 | Level | |
| 28 | 3430 | 4，000 | ．．． | Do． | Opposite this poiut n large stream from S．E．falls into the Shûrtá Sáñgpo． |
| | | 4，900 | \cdots | Do． | A small stream from the W．falls into the Sbûrtá Sáñgpo（river）． |
| | | 5，200 | ．．． | Do． | Zángrá Dûūg or Rebo（camp）． |
| | | 10，500 | 24，600 | Do． | On the left bank of the Shûrtá Sángpo． |
| 29 | 3260 | 4，000 | 4，000 | Do． | Opposite this point，on the other bank，stands an isolated hill called Thízam（well－known）． |
| 30 | 3090 | 6，000 | 6，000 | Do． | At this point the Shûrtá Sánigpo river follows a north ensterly course for about three miles，and then taking an easterly course for about four miles，falls into the Tamjan Khambí or Bralımaputia． |
| 31 | 28630 | 10，200 | 10，200 | Do． | Gangab－phâ（Gûnpá）．At this point a stream from S．flows past，and falls into the Brahmaputra thre miles ahead． |
| 32 | 32030 | 2，500 | ．．． | Do． | At Tallá Labrong（onmp）．Observations for latitude were taken here，also thermometrical observations． |
| | | 4，400 | \ldots | Do． | A stream called Hîmûlûng（chú）coming from W． flows past this point and falls into the Brahma－ putra． |
| | | 1，600 | \ldots | Do． | At Yák Kiû or Malá Labrong（a large camp）．The Bralumaputra river is distant about one and a－half miles N．E． |
| | | 2，600 | ．．． | Do． | One branch of the Hùmûlûng（chí）flows past this point，and fulls into the Bralimaputra river one mile above． |
| | | 8，500 | 19，600 | Do． | At Chabrdan（Gînpá），an old monastcry about one mile from the Brahmaputra river． |
| 33 | 33730 | 4，500 | ．．． | Do． | On right bank of the Brahmaputra．To the loft of the road is a small tarn． |
| | | 2，000 | 6，500 | Do． | Small isolated hills on both sides of roud． |
| 34 | 110 | 3，000 | ．．． | Do． | Relá Gûnpá，a large monastery． |
| | | 4，000 | 7，000 | Do． | On the right bank of the Bralimaputa． |
| 35 | 34830 | 2，000 | ．．． | Do． | Do．do． |

					Remaris.
35	34830	2,000	...	A	On the right bank of the Brahmaputra.
		1,000	\ldots	D	Do. do.
		700	5,700	Level	At Kiûdoñg.
36	450	5,000	5,000	Do.	On right bank of the Brahmaputra.
37	2230	4,000	4,000	Do.	Mûné-dûgé or Ghát.
1	28630	5,000	...	Dı.	(Station 1). This station is identical with No. 36.
		1,700	6,700	A	On the top of Tákoláh mountain.
2	29230	2,000	...	D	Sateáh-doñg (camp).
		3,600	5,600	Level	
3	33730	3,000	3,000	Do.	Játig thál-doñg (camp).
4	30330	2,000	...	Do.	A small stream from S.E. flows pnst, and falls into the Brahmaputra two miles ahead.
		2,000	4,000	Do.	
5	28630	2,800	\cdots	Do.	At Gárbá-doñg, to the right of the road is an isolated hill.
		1,000	\ldots	Do.	On right side of the road a tarn called Sañgi-gam.
		1,000	\ldots	Do.	Do. do.
		800	\ldots	Do.	Do. do.
		19,000	24,600	Do.	At Likche Ginpai, on right bank of the Brahmaputra. South of this point, distant ahout one mile, lies a lake one mile long by one mile in brendth. The Brahmaputra at this point is crossed in boats formed by a frame-work of wood covered with leather.
6	3540	5,000	5,000	Do.	In the vicinity of numerous little putches of water.
7	2230	7,400	7,400	Do.	Tádúm (Gûnpá) monastery, and tarjum, or halting place, situated on a hillock. Numerous patches of water all round.
8	1010	13,000	...	Do.	
		2,500	15,500	Slight A	
9	7830	1,000	\ldots	D	In the vicinity of this point are numerous pateles of water.
		3,000	4,000	Level	Thûkû eamp.
10	9530	2,500	\ldots	Do.	
		3,200	5,700	Slight A	
11	10630	2,000	\cdots	D	
		6,200	8,200	Level	Lakchan camp.

					Remaris.
12	- ,				
	14030	1,000	...	Level	A tarn.
		5,000	6,000	Do.	Phûchûngmá camp.
13	1290	4,000	...	Do.	On the left bank of a small branch of the Brahmaputra river.
		6,000	10,000	Do.	At Shricárpo, on the right bank of the Minchî Sáñgo, which comes from the E., and falls into the Brallmaputra one mile distant.
14	7830	7,000	7,000	Do.	On right bank of Minchú Sáñgpo.
15	390	5,500	...	Do.	From this point the Minchû Sánigpo is seen to come from the N.E.
		1,200	\cdots	Do.	Nikû tarjum, or halting place.
		2,000	8,70C	Do.	
16	9530	9,300	...	Do.	On road to this point crossed a branch of the Minchin Sángpo; a stream coming from the S. flows past and falls into the Minchú Sáñgpo four miles to the north.
		3,500	12,800	Slight A	
17	11230	2,000	...	Level	At this point a small strenm coming from S.W. flows past, and taking a north-eastorly course, falls iuto the Minchû Sánigpo three miles ahead.
		4,000	...	Do.	At this point a stream from S.W. flows past and falls into the Minchá Sáñgpo.
		1,400	...	Do.	Jagúñg camp.
		6,700	\cdots	Slight A	On top of Lálúnglá mountain. A small strenm, rising at the foot of this mountain, falls into the Minchû Sáingpo. A large road leads from bence to Joñg-ká-joñg.
		400	14,500	D	
18	840	5,000	5,000	D	A village in ruins.
19	560	4,000	4,000	Level	On the right bank of the Chartá (Sángpo) river. At this point the Chnotá-Sángpo changes its course from a southerly to a south-easterly direction. The ruins of an old fort are seen neur, called Gjáh-khar-jáh-khar.
20	11230	2,500	...	Do.	On the left bank of the Chartá Sángpo.
		700	...	Do.	At this point the Chnrtá Sángpo flows in a southerly direction, and empties itself into the Brahmaputm six or seven miles below. To the north of this point, distant ahont one mile, stands a modastery (Gûnpá) called Darkiáling.
		3,100	6,300	Do.	On tho right of a strenm called Chá-ká-chú which comes from Fi. and falls into the Cliurtí (Sáĩgpo) river three miles below.

					Rematrs.
21	840	8,000	...	Level	Jháliñg camping place, on the right bank of the ('hár kúrchú.
		1,000	9,000	Do.	
22	7830	5,000	5,000	Do.	Snr-kí, a large villnge, situated one mile north of the ('lá-ki-chú stream. A fort called Sarlsájoug stands at the cast end of the village.
23	1180	3,400	...	Do.	A small stream from N.W. flows past and falls into the Clai-kí-chú stream quarter of a mile below.
		12,900	...	Do.	On the left bank of the Chá-kú-chú, which stream from this point appears to come from N.E., flowing past the foot of a very suowy and high mountain culled Hurkiang, distant about three miles.
		1,100	17,400	Do.	Nágiling camping place. A road from this point running S.L. leads to Jonk-ká-jong.
21	11230	4,000	...	Do.	Lárchá ; (foot of hill).
		1,000	\ldots	Λ	
		1,000	...	Level	On top of Gyálá mountain ; pilc of stones (Lapchá).
		2,300	8,300	Do.	From this point the Brahmaputra river is visible three miles to the south.
25	14030	2,000	...	D	
		2,000	4,000	Level	A ruined village.
62	10630	2,000	\ldots	Do.	
		1,000	\cdots	A	To the right of the road a long tank called Gablchu.
		1,500	4,500	Slight A	I'ile of stones (Lapehá). The tank meutioned above ends at this point.
27	6730	1,600	1,600	D	Vpehi village. Grain is raised at this village.
28	1290	2,800	2,800	Level	The Bralimaputrn is two milcs south.
29	9530	8,000	8,000	Do.	Road runs between hills along a small stream.
30	3330	5,200	...	Do.	At Chomâkûlá Tarjum. Observations for Intitude were taken here.
		2,800	\cdots	Do.	A very small stream from the left.
		1,200	9,200	Do.	
31	5030	3,700	3,700	Do.	About three miles from this point is a high snowy mountain.
32	730	5,200	5,200	Do.	
33	2230	2,700	2,700	A	On top of Gúrla mountain. From this point is distinctly visihle a high snowy range fifteen miles distant, stretching about forty miles E. to W. The Ráká (S'áingpo) river las its source at the foot of this mountain.

					Remanfs.
34	\circ 07 670	6,200	6,200	Level	To the right of the rond stands a range of hills stretching in an easterly direction.
35	$90 \quad 0$	6,000	...	Do.	At this point a stream from south falls into the Rajk Sánigpo.
		2,500	8,500	Do.	At Tarchung camp; a small stream from south falls into the Ráká.
36	9530	8,000	\ldots	Do.	On the opposite bank of the Rákui is a grazing-ground called Ahle.
		8,000	...	Do.	At Ráká-Tházang-Tarjam, or halting-house.
		4,500	20,500	Do.	At this point the Ráká Sáñgpo flows in an N.N.E direction for about four miles, and then due E .
37	6730	2,000	...	Do.	At Máne ; a platform covered with eugraved stones.
		1,700	...	Slight 4	
		1,200	...	D	A stream from S.E. flows past, and falls into the Ráká one mile N .
		1,600	6,500	Level	Gũáñg-bi-áko camping-ground.
38	730	5,500	5,500	Slight A	Gnáñgla mountain. To the right of the road a very lofty snowy penk.
39	7830	2,500	\ldots	Level	Lapchá ; pile of stones.
		3,200	5,700	D	On the right bank of the stream mentioned on rond from station 37 to 38 .
40	1010	2,200	2,200	Level	
41	$73 \bigcirc$	8,400	8,400	Slight A	Sáñg-bi-(la) Lapchá.
42	6730	600	\ldots	Level	Lapchá ; pile of stones. From this point, distant about fifteen miles, is seen a very high snowy range stretcling from N.li. to S.W. The Brahmaputra flowe behind this range.
		1,800	...	D	At Rûan ; camping place foot of hill.
		7,000	9,400	Level	On left bank of a strenm which from this point flows to the right of the road, and falls into an immense lake four miles in length called Kyongdam cho.
43	6130	8,000	\ldots	Do.	The lake called Kyongdam extends to this point.
		3,500	\ldots	Do.	At Sáñg-Sáñg-giah-do Tarjam. Observations for Jatitude were taken here, also thermumetrical observations.
		1,200	12,700	Do.	Alongside lake.
44	3330	2,000	2,000	Do.	Alongside lake. This lake is three-comered. The Ráké Sáigpo rịver supplies it with water.
45	10030	1,000	1,000	Do.	On the right bank of the Ráké Sáñgpo.

					Remareg.
46	1800	900	...	Level	From this point the Rúkú Sínigpo continues un easterly course, and a large road runs alongside the river leading to Lhásá. At this point a stream coming from S. falls into the Ráká Sáñgpo.
		2,800	3,700	Do.	On the left bank of the stream mentioned above.
47	14030	4,000	4,000	A	On top of Kichelá mountain.
48	6730	4,000	4,000	D	On left hank of a stream which rises at the foot of Kichela mountain.
49	$39 \quad 0$	1,400	...	Level	A small stream from S.E.
		300	...	Do.	On right bank of stream.
		1,500	3,200	Do.	At this point the stream follows a northerly course, and fulls into the Ráká Sáng go one mile distant.
50	840	5,500	\ldots	Slight A	On top of Ge-ln mountain; (Lapchá) pile of stones.
		700	6,200	D	
51	560	3,500	3,500	Level	Ge camp, on bank of a small stream which rises at fout of the Gc-la, and falls into the Ráká Sáñgpo river.
62	11230	1,600	1,600	A	Lapchá ; pile of stones.
63	$90 \quad 0$	2,600	2,600	Slight D	From this pọint the Ráká Sáñgpo river is seen threequarters of a mile distant north, and about one nile beyond the stream is the Gniaring Gûnpa monastery.
54	10630	1,500	\ldots	I.evel	A small stream from S. flows into the Ráká Sáñgpo hall a mile north.
		4,000	5,500	Do.	
55	1350	2,000	2,000	Do.	
56	10630	3,000	\ldots	Do.	Λ stream coming from S.W. flows past into the Rákú Súñ̃gpo.
		3,800	6,800	Do.	Lapcha ; pile of stones,
67	11230	4,000	\ldots	Do.	A large strenm from S. flows past into the Rákí Sáñé po one and n-half miles north.
		2,800	6,800	Do.	Mine ; platform covered with engraved stones.
58	1350	2,200	2,200	Do.	Lapchá ; pile of stonces.
59	9530	7,200	7,200	Do.	A small stream from S.W. flows jnat, and falls into the IRáká Sánigpo three miles north.
60	730	5,000	5,000	Do.	At this point* a stream coming from E. flows puat. into the Háká síninguo. North of this point 1,000 paces stands Snng-Sang-Knu Tarjam, where latitude and thermometrical observations were taken,

[^18]| | | | | | Remaris. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | \bigcirc | | | | |
| 61 | 1350 | 2,000 | 2,000 | Level | Máne ; a platform covered with engraved stones. |
| 62 | 1010 | 1,500 | \ldots | Do. | Due north of this point ahout four miles the Rákg Saingpo is seen flowing in a north-easterly direction. |
| | | 2,900 | \ldots | Do. | On right bank of stream mentioned on ruad from star tion 60 to 61 , which comes from the S.E. |
| | | 800 | 5,200 | Do. | Lapchá ; pile of stones. |
| 63 | $90 \quad 0$ | 4,600 | \ldots | Slight A | On summit of Kálhá mountain, which forms the boundary between the districts of Bót or Chang and Dókthál. |
| | | 1,800 | 6,400 | I | |
| 64 | 10630 | 1,800 | 1,800 | Level | |
| 65 | 7830 | 2,000 | \ldots | Do. | Máne; a platform covered with engraved stones. A small stream from S. |
| | | 1,000 | \ldots | Do. | On right bank of stream. |
| | | 800 | 3,800 | Do. | |
| 66 | 14030 | 1,100 | \ldots | Do. | A small stream from S.E. flows past in a N.W. direotion. |
| | | 1,800 | \cdots | \cdots | At Kûkíp camp. |
| | | 1,000 | 3,900 | Do. | |
| 67 | 12330 | 2,500 | ... | Do. | Lache, foot of hill. |
| | | 1,300 | \ldots | A | On summit of Tháñglá hill. |
| | | 1.500 | \ldots | D | |
| | | 2,000 | \ldots | ... | On left bank of a stream from S.W. and flows in a north-easterly direction. Ahout one mile to the north of this point is situated a very large monastery (Gûnpá) called Rigî-Tábzáng. |
| | | 2,800 | 10,100 | Level | On right bank of the stream. |
| 68 | $90 \quad 0$ | 600 | ... | Do. | Here another stream comes in. |
| | | 2,000 | \ldots | Do. | Alongside stream which taken hence a northerly course, and falls into the Káká Sáñgpo some dis tance away. |
| | | 1,600 | 4,200 | Do. | Máne ; a platform covered with eugraved stones. |
| 69 | 11230 | 800 | ... | Do. | A stream from S. flows past. |
| | | 1,200 | 2,000 | | |
| 70 | 9530 | 1,600 | \ldots | Slight. A | On top of hill at a amall tara. |
| | | 200 | 1,800 | Level | |

				$\begin{aligned} & \text { 우 } \\ & \text { 웅 } \\ & \text { 영 } \end{aligned}$	Remabeg.
71	7830	7,500	7,500	D	On right bank of the Chirkû stream, which flowe hence N.E. by N., and falls into the Rák ، Sángyo.
72	1010	1,200	1,200	Lerel	Rálûng, a large village ; observations for latitude were taken here. East of this all villages on the road raise their own grain.
33	$90 \quad 0$	1,500	1,500	Slight D	At the N.W. end of a large lake called Gnábring Kimcho, about five aud a-half miles long and three miles broad.
74	12330	500	\ldots	Level	A Gûnpá monnstery lies to the north, the lake being about quarter mile distant.
		5,000	...	Do.	To the left of the rond another monastery (Gûnpá).
		1,000	6,500	Do.	Máne ; a platform covered with engraved stones.
75	1350	3,600	3,660	Do.	Grábring Kháká village and Tarjam; latitude observations taken here. About three miles, 60° enst of north, is a very large village and fort called Ginábring joing. From this point a snowy range is seen about fifteen miles north.
76	15730	3,100	3,100	Do.	A stream coming from S. lows past into the Gũábring Kiuncho.
7	10630	1,900	1,900	A	On summit of a low bill.
76	12330	300	\cdots	Level	At a small tank.
		300	...	Do.	
		2,900	3,500	Slight D	On left bank of a stream.
79	10630	2,400	...	Level	Chaulûng, a small village on bank of stream.
		2,500	...	Do.	At Cbiting, a small village on bank of stream.
		2,200	7,100	Do.	A large stream from 78° east of north flows past, and falls into the Bruhmaputra to the south.
80	7830	2,200	...	Do.	Damálûng village, on right bank of above stream.
		3,200	...	Do.	500 paces to north stands the village of Lárchá-hil, tho large stream cones from the north the this point.
		300	5,700	Do.	
81	840	2,500	\cdots	Do.	300 paces S.W. is the village called Namá.
		600	...	Do.	At S.W. end of a large lake called Lángcho Gonák.
		300	3,400	Do.	On bank of lake.
82	6130	2,600	\cdots	Do.	At a (Ginpa) monastery, on lank of lake. To the left of the road stands a second Gunpá half wuy up the slope of a low hill.
		600	3,200	Do.	A large monnstery (Gûnpa) un bank of luke.
83	9530	2,500	2,500	Do.	On bants of lake.

$\frac{\stackrel{5}{x}}{\stackrel{0}{x}}$					Remames.
84	$\begin{array}{cc} \hline 0 & 1 \\ 90 & 0 \end{array}$	200	...	Level	At this point the lake becomes very narro
		1,200	...	Do.	To the left of the road the Lalung monastery (Gutrpi).
		2,600	4,000	Do.	Extreme E. cnd of lake.
85	730	2,100	2,100	Do.	To the N.E. quarter of a mile the village of Bárkhá and to the north a very lofty snowy peak.
86	1290	4,000	...	Do.	At Kharû village.
		3,800	...	Do.	A large Máne; platform covered with engraved stoncs.
		400	8,200	Do.	Singilung village.
87	15730	3,800	3,800	Do.	Napsi village, on left bank of stream, which fows south into the Brahmaputia ono mile distant.
88	7830	6,000	...	Do.	Gádûc village, to right of road.
		600	\cdots	Do.	Degûñg (Gûnpá) monastery to left of road.
		4,500	11,100	Do.	On left bank of the Brahmaputra, which on the oppor site bank receives a stream from the south.
89	$90 \quad 0$	3,000	3,000	Do.	Chunke village, on left bank of the river.
90	5030	4,000	4,000	Do.	Jangláche city with n fort, both on the right hank of the Brahmaputra, which was crossed in boats. Latitude and thermometer observations were taken in the city.
91	3260	3,2C0	\cdots	Do.	The Brahmaputra is here spanned by an iron chaiu suspension bridge called Chaksam. Opposite tlis point on the left bank is the Debung (Güupia) monastery.
		500	3,700	Do.	
92	450	3,700	\ldots	Do.	To left of road stands a Gûnpá and a corn-mill.
		1,000	...	Do.	Opposite, on the left bank, is the Dele village.
		3,000	\cdots	Do.	To right of rond the Shekcha village.
		1,800	\ldots	Do.	To right of road the Shekcha Okmi village.
		1,200	10,700	Do.	A village is seen on opposite bank, name not ascertained.
93	$360 \quad 0$	3,800	3,800	Do.	The Cholá village.
94	1630	2,500	2,500	Do.	Two villages (names not ascertained).
95	840	2,400	2,400	Do.	Chakdang villnge. The Brahmaputra is half a mile from this point.
96	280	4,600	4,600	Do.	On right bank of Brahmaputra river. Opposite village, name not known.
97	730	2,000	2,000	Do.	Nesá village.
98	560	2,000	...	Do.	Diñg village, on right bank of river.

					Remanks.
	560	2,000	\ldots	Level	Pháñgi village, on right bank of river.
98		2,400	6,400	Do.	On right bank of the Brahmaputra.
99	$90 \quad 0$	3,000	\ldots	Do.	At Táshi joñg village.
		2,000	5,000	Do.	Ou right bank of river.
100	450	1,0007,000	...	Do.	At this point a strenm from S.E. falls into the Brahmaputra. A village called Thásiling lies 1,000 paces south-enst, on the left bank of stream; observations were taken here.
			8,000	Do.	Thang; (road precipitous here). At this point the Ráká Sángpo river falls into the Brahmaputra, it comes from (252°) 72° west of south.
101	1290	3,500	3,500	Do.	Phûn-cho-ling village and (Gúnpá) monastery, on right bank of river; the river is here spanned by an iron suspension bridge called Chaksam.
102	84, 0	5,500	\cdots	Do.	Thang; (precipitous road). On the other bank of the river is the Chehil village.
		3,000	...	Do.	Opposite, on the other bank of the river, the Púsúm village.
		400	...	Do.	Pángdá village, on right bank of river.
		2,000	10,900	Do.	On right bank of Brahmaputra river.
103	$90 \quad 0$	2,500	2,500	Do.	Do. do.
104	15730	1,200	...	Do.	At this point the river is spanned hy an iron suspension bridge called Chaksam. A road lending over the bridge and ruming N.E. goes to Jisáng Lüngbé.
		3,200	4,400	Do.	From this point the Brahmaputra furs 112° bearing.
105	1800	2,500	2,500	Do.	Dhûn-dup-diñg vilhge.
106	15730	3,200	\ldots	Do.	Tásbi Kang, a very large villnge.
		2,000	\ldots	\cdots	A small stream from the south flows past into the Brahmaputra three miles north.
		1,000	6,200	Do.	
107	11230	4,000	...	Slight A	(Lapcha) a pile of stoncy.
		2,000	6,000	Slight D	
108	15130	3,800	3,800	Do.	Road runs betreen hills.
109	9530	4,400	4,400	Level	Jilûng, a very large village; observations for latitude were taken here.
110	10630	6,700	\ldots	Do.	Nenr Shilkár village.
		800	7,500	Do.	Near Shilkér Rárki villages; thermometrical observations taken here.
111	450	2,000	2,000	Slight D	Regained the high rond, which was left at station 110.

$\begin{aligned} & \text { 品 } \\ & \text { 彩品 } \end{aligned}$					Remaris．
112	$\begin{array}{cc} \circ & \prime \\ 6730 \end{array}$	500	．．．	Level	One milo south the village of Shilkér Okmi．
		3，500	4，000	Do．	
113	1010	500	\ldots	Do．	A very large village called Sabgeding．
		1，000	\cdots	Do．	A stream from S．E．flows past，and after puraning a north－westerly course for one mile turns to E．， and falls into the Brahmaputra three or four miles distant．
		500	2，000	Do．	
114	1350	1，700	\cdots	Do．	A village（name not ascertained）．
		1，200	\ldots	Do．	Thoûktá village．
		900	3，800	Do．	
115	11230	4，500	4，500	Do．	Gñe village，
116	1010	2，000	\ldots	Do．	To right of road a（Gûnpá）monestery．
		1，500	3，500	Do．	
117	$90 \quad 0$	4，500	．．．	Do．	Hamínang－jolé village．
		6，400	\ldots	Do．	Shegúe village．
		2，000	．．．	Do．	Singmé village．
		600	．．．	Do．	North three quarter mile a large（Gûnpá）monastery called Ganjian．
		4，800	18，300	Slight A．	On summit of a low hill．
118	10630	1，200	1，200	Level	Lapchí（pile of stones）．Near this point a stream riseef，known as the Zourák－chû lower down．
119	$90 \quad 0$	5，000	5，000	Slight D	At Chakri village．
120	6730	8，000	8，000	Level	To the south one mile is a village（name not ascer－ tained）．
121	450	5，000	5，000	Do．	Nátáng villinge，nnd Gûnpá（monastery）．
122	730	3700	3，700	Do．	To the south about one mile flows the Zourák－chú stream，which from thence an easterly conrse．
123	3600 450	1，900	1，900	Do．	To the north about half a mile the Shabro village．
124		2，500	\ldots	Slight A	Lapchá（pile of stones）．To the noth one and a－ quarter miles Suudûphûls village．
		6，500	．．．	Level	Dhejánphak village．
		1，200	\cdots	Do．	Táshilûmbo monastery（Gûnpá），one mile in circum－ ference ${ }^{*}$ ．

－Thermomotrical observatioc：were talen here．

					Remaris.
124	450	1,000	11,200	Level	In the caravanserai or konkhan morth-east end of the city of Shigatze or Digarcha. N.W. of this point about 500 paces, on the summit of a low hill, stands a fort called Giang Márjoǹg. South about three-quarters of a mile lies a village called Táshikanchá ; three quarters of a mile distaut, north-east of the city, is the Konkuling monastery (Gimpá), on the left bank of the Penánáng clun river, which, flowing north for three miles, falls into the Brahmaputra. To the south of the city nhont nine miles is a range of monntains called Maori, where fold is said to be found. The city of Digiurcha is one mile long and three-quarters thead. Olservations for latitude and thermometrical observations were taken in the konkhan or caravanserai.
125	14030	4,800	\ldots	Do.	Khárak village ; the residence of a high military official called Depung.
		1,100	\ldots	Do.	On the left bank of a stream coming from 1.51° which falls into the Penánáng chu river three-quarters of a mile distant.
		2,500	...	Do.	Chamchû village.
		3,500	...	10.	Giádûe village.
		2,500	$1+400$	1) 0 .	Lálîng village.
126	12330	4,900	4,900	Do.	Chongdiii village, on the bank of a small stream from south, which falls intu the Penánáng chu half a mile distant.
127	7830	8,000	...	Do.	Giung village.
		2,000	\ldots	Io.	Juge village.
		2,200	\ldots	Do.	Die village.
		6,000	\ldots	Do.	15° enst of north tro miles distant stands the Kítong monastery.
		2,000	\ldots	Do.	Pházang village.
		2,800	-3,000	Do.	Pena Jong villape, situated on the right lank of the J'enathang chu river, which is bidged. Observations for latitude were taken at this village in konkhan or curavanserai.
128	11230	5,800	Б, 800	Do.	On the right bank of the Penánang chu. To left and right of rond are hills.
129	1460	6,000	\ldots	Do.	Shobo village.
		1,200	7,200	Do.	On right bank of stream.
130	12330	2,600	2,600	Do.	Do.
131	1010	2,600	2,600	Do.	Do.
132	$90 \quad 0$	2,000	\ldots	Do.	Tashiphit village.

					Remares.
132	$90 \quad 0$	2,000		Level	Yái village.
		9,800	13,800	Do.	Túkse village ; a small stream from 56° east of north falls into the Penánáng chu here.
133	1010	2,000	2,000	Do.	A solitary hut on the right bank of the Penánáng chu river.
134	1630	2,700	2,700	Do.	On the right bank of the Penánáng chu, to the left of the rond.
135	14030	2,000	2,000	Do.	Due west three quarters of a mile is situated Rongche Gûnpá.
136	1290	2,300	...	Do.	Thákchá village.
		6,400	...	Do.	Chanka-Kesû village.
		8,500	\ldots	Do.	Cheko village, on right bank of stream. Due west one mile stands Chichi Gûnpá monastery.
		3,800	21,000	Do.	At konkhan or caravanserai in the city of Gyangze. A fort commands the city called Gyangze Jong. Ob servations for latitude, de., were taken here.
137	12330	8,000	...	Do.	Two miles due south of this point a strcam from S.E falls into the Penánáng chu stream*.
		1,000	9,000	Do.	
138	1180	3,800	...	Do.	Thagni village.
		4,000	7,800	Do.	On right bank of Penánáng chu.
139	1010	3,800	\cdots	Do.	At Kotang village, on right bank of strcam. The rond from the city of Shigatzo to this point is very good.
		800	4,600	Do.	
140	900	3,500	3,800	Do.	On right bank of stream. To the left of road are bills.
141	2230	1,700	1,700	Do.	A small village (name not ascertained).
142	840	1,100	\cdots	Do.	On left bank of the river, which is bridged.
		3,000	\cdots	Do.	Málang village, ou left bank of stream.
		400	4,500	Do.	
143	15730	1,600	\ldots	Do.	Gobji village, on left bank of river. Observations for latitude and height were taken bere.
		500	2,100	Do.	At this point a stream from S.W. flowe past into the Penánáng chu ncar Gohji village. A road from this point runs alongside the stream, coming from S.W. above mentioned, leading to Loht.

- This is Turner's river.
+ Loh or Bhootan.

					Remarke.
144	6730	400	-.	Level	On right bank of stream.
		1,400	...	Do.	Sákiá monastery.
		2,600	.	Do.	Gorch village, on right bank of stream.
		6,700	...	Do.	Shetot village, on right bank of stream.
		600	11,700	Do.	A stream from north fills into the Penánáng chu near the village of Tashikekang.
145	1350	1,000	...	Do.	Lûñgmá village; a stream from N.E. falls intu the Penánáng chu.
		6,000	7,000	Do.	On right bank of Pevánáng chu stream.
146	840	6,500	6,500	Do.	Gahkhan (Palace), on left bank of stream, which is bridged. Here a stream coming from east falls into the Penánáng chu. Opposite, on the left bank of the former stream, is siluated a village called Rálung. Thermometrical observations were taken at Gahkhan.
147	110	5,200	5,200	Do.	On left bank of Penináng chu stream.
148	3330	7,500	7,500	\cdots	Opposite, on the other bank of the stream, stands the village called Gomtang, at the foot of a very lofty snowy mountain called K hárola.
149	$90 \quad 0$	7,400	\cdots	Slight A	Lapchá* ; a pile of stones on summit of hill. Alongside this point lies an immense glacier. Here the Penánáng chu stream has its source.
		2,500	9,900	D	
150	6130	4,500	4,500	D	On left bank of n small stre 1 m rising at foot of Khárolà mountain.
151	1010	400	...	D	Záré, a Chinese post-stage.
		2,200	2,600	\ldots	On left bank of stream.
152	730	2,400	...	Level	A stream from north.
		3,000	5,400	Do.	On left bank of stream.
153	840	2,200	2,200	Do.	Do.
154	1290	2,600	2,600	Do.	Do.
155	450	2,400	...	Do.	Rigro village.
		3,900	6,300	Do.	On left bank of strenm, which flows north-east, and feeds the Yamdok-cho lake two miles distant.
156	280	5,000	5,000	Do.	
157	1630	5,000	5,100	Do.	Nangañche village, with a fort called Nangáñche Jong.
158	3550	2,000	...	Do.	On west side of tho Yamdok-cho lake at a village (name not ascertained).

- Thermometrical obearvationa were taken here.

$\begin{aligned} & \text { 另 } \\ & \text { 教安 } \\ & \hline \end{aligned}$					Remarks．
158	3550	6，000	．${ }^{\prime}$	Level	On west side of the Yamiok－cho lake．
		4，400	\cdots	Do，	From the foregning point to this the lake bends iu considerably．
		2，600	15，000	Do．	On west bank of Yamdok－cho lake．
159	3090	7，500	7，500	Do．	On bank of lake，at Yárchi village．
160	1180	6，500	6，500	Do．	On brak of lake．
161	450	6，800	6，800	Do．	On bank of lake，at Pyáhtejong village and fort，nis servations for latitude and thermometrieal uner vations were taken at this place．
162	560	8，000	．．	Ho．	On bank of Yamdok－cho lake．At this point the laku widens somewhat．
		12，000	20，000	Do．	On bank of do．
163	9530	2，500	2，500	Do．	On bank of Yamolok－cho lake，at Demíling village From this point the Yamdok cho lake hears IJo cast of north，stretching in that direction for twenty miles．The Yamdok－cho lake，as far as seen，varied in breadth from one and a－hall to three and a－trall miles，it is said to encircle a very lar se island about fifteen miles in diameter．This island rises into low rounded hills，at the foot of which several villages were visible．The villagers keep up that commanication with the main land by means of boats．
164	3600	1，500	1，500	Great A	It Kl：a nlálía（Lapchá）；pile of stones．This mountain forms the boundary between the tro provinces（lo and Cháng．These latter names are derived from the mode of head－dress which their respective in－ habitants adopt，the former circular，and the latier conical．
165	110	7，400	．．．	D	At Khambí－laiche village．
		800	8，200	Level	On right lank of the Rrahmaputra，which appears to be coming from the W ．
166	$40 \quad 0$	10，000	10，000	Do．	At Chaksam－chori village，on right hank of the Imah－ maputra river．The river is bridged at this puinu The bridge is formed of iron chain and repe．T＇lie river is also crossed by feryy at this point．
167	500	6，700	6，700	Do．	On left bank of the river，at a large village called Chishinl Joug．From this point the Bralmmputrat river flows S．E．，and at the distance of two miles receives the water of the Lhásí Kichî Gonbo river （nlso called Lhúsá Kichâ Sáñgo），and from thenca fows east．
168	6730	1，000	\ldots	Do．	At this point a atream from N．W．flowe past，and at a distance of two miles S．E．fablls into the Lhisia Kichú（Sác̀gpo）river．
		3，200	\ldots	Do．	On the right bank of the Lhásá Kichí（Sánigpo）river．
		7，900	12，100	Do．	Chábonáng villuge．

					Remareg.
169	$\begin{array}{ll} \hline \circ & \prime \\ 84 & 0 \end{array}$	4,000	4,000	Level	On right bank of the river, which bends in between the foregoing and this point.
170	5030	1,500	1,500	Do.	On right bank of river.
171	450	3,600	3,600	Do.	Záme village, on right bank of river.
172	2230	2,000	...	Do.	Jaĩglot village.
		3,000	5,000	Do.	Thang; precipitous road overhanging the river.
173	530	9,000	9,000	Do.	Do., do.
174	450	2,000	...	Do.	Gákhan (or serni), in Netang village.
		6,000	8,000	Do.	On right bank of the Kichû (Sángpo) river.
175	$360 \quad 0$	7,000	\cdots	Do.	At Gaing village, on right hank of river.
		2,400	9,400	Do.	Tilung village, on the left bank of the Tilung chú, which stream is here spanned by n stone bridge of two arches, called the Tilung Sumbá. The Tilung chú comes from the north, but for five miles above Tilung the bearing of ite course is 293°; it continues to flow in the same direction for two miles below Tilung, and then falls into the Kichû Sángpo.
176	450	4,500	4,500	Do.	Singdoñkhar village, on right bank of the Llásí or Kichû (Sángpo) river.
177	6130	2,600	\ldots	Do.	North of this point quarter mile stands Debûng monastery (Gûnpá) ; 7,700 priests (Lámás) are said to live in this monastery. The temples belonging to this monastery are gilded.
		1,000	3,600	Do.	
178	9530	2,000	...	Do.	Two and a half miles, 51° N.E., stands a large monastery on the banks of a stream, which coming from N.W. flows past iuto the Llásíá Kichû Sángpo river half a mile south.
		4,000	6,000	Do.	Near a Chitrtan. To the north of this point, on a low hill, stands the fort called Potolall, the residence of the rajah and the bigh priest of the Limis. To the south of this point, lies a high isolated bill, called Chíkpori, surmounted by a solitary hut. At the foot of this hill stands the Koñtáling monastery.
179	900	1,800	1,800	Do.	At Chartan, in the beart of the city of Lhásá. 300 paces from this point to the south stands a very large temple, called by three different names, viz., Jûring-bo-clá, Phákpáchengrááand Máchindránáth; it is surrounded by shops and bazars. West of this temple stands a monastery called Tánkáling. Two monasteries respectively named Múrù and Rámúchii are situated the one E., and the other N.W. of this Cbûrtan, while a third monastery, called Chumoling, stnuds west of Rámûchiá. South of the river Kichî Śngppo (which flows half a mile south of the city), and distant two and a-half miles, is situated the monnstery called Chochûling. The four monasteries Kontáling (No. 178), Tánkáling,

					Remarks.
179	(Continued.		Chumoling, and Chochûling, were held in great repute in former days, the chief Lamais of these monasteries succeeding to the throne of the Potoláh rajalı on its becoming vacant; but now their right of succession las been alolished, the Debing head Lámá possessing the sole right. To the east of Lhásá, and within three days journey (about thirty-six miles), on the left bank of the Brahmaputra river, is situated a large monastery and city colled Sáme. Thousunds of pilgrims resort an nually to worship at this shrine. The govermment trensury is snid to be at Sáme. Forty miles east of the city Sáme, and on the right bank of the Brahmaputra river, is situated the large city of Chotang, and 120 miles east of Chotang is situat ed the city called Churri, forming the extreme east boundary of the Lhásá territory. The Brahmaputral river is said to flow south from this city. To the north of Lhásá, and distant about four miles, is seen a range of hills, called Totiphû, stretching fiom east to west, among which gold and silver are found. Latitude observations were taken in the city of Lhásá, as also thermo metrical observations at a house named Dhiki Rábdán Tashilûmbogi Kháñg Sombá, twenty paces east of the Jûring-bo-chá temple.
180	3600	5,500	5,500	Level	Near the Sárá monastery, at foot of Totiphú range of hills; 5,500 priests are said to live in this monastery, which is very large.
181	1290	4,300	4,300	Do.	A small village (name not ascertained), at foot of Totiphû range of hills.
182	1180	2,000	2,000	Do.	At foot of Totiphû hills.
183	2530	4,000	4,000	Do.	At Chaksam village, on right bank of the Kichû (Sángpo) river. This village is on the high road to China.
184	6730	6,000	7,200	Do.	On right lank of Kichû Sángpo, at Garbá village. The high road to Galdan bears 75° from this point.
185	3330	1,000 1,800	2,900	$\begin{aligned} & \mathrm{A} \\ & \mathrm{D} \end{aligned}$	Dási village.
186	31830	5,500 1,400	\cdots 6,900	Slight A Great A	A small village (name not ascertained). Dákyárpá monastery, half way up the hill.
1	11230	2,900	2,900	Level	Ou high rond to Caldan, alongside Kichû Sáugpo river,
2	7830	1,200 3,500	...	Do. Do.	Nañgrá village, on right bank of Kichñ Sángpo. A quarter of a mile from this point, and about S.E. is situated a fort called Dlejáu Joñg, ou a low isolated bill.
3	450	$\begin{aligned} & 5,000 \\ & 2,400 \end{aligned}$	9,700 2,400	Do. Do.	Bûmtat village. On right bank of Kichá Sángpo river.

					Remarks.
4	2230	1,800	1,800	Level	Ou right bank of the Kichû Sángpo river.
5	$360 \quad 0$	3,700	...	Do.	Khire village No. 1, ou bank of river.
		1,000	4,700	Do.	Khire village No. 2, do.
6	730	800	\ldots	Do.	At this point a stream coming from west, but changing its course to sonth within two miles of this place, falls into the Kiohû Sángpo.
		500	...	Do.	On left bank of river.
		3,000	...	Do.	At foot of hill.
		3,100	7,400	A	Galdan monastery; this monastery is said to contain 3,300 priests. About three and a-half miles distant, on the other side of the river, with a bearing of 16°, lies the vilhuge called Tákche.

Route-Survey from Tadún to Mansarowar and Dongpî (in Nari-Khorsum).

					Remaries.
1	3150	7,200	\cdots	Level	To the left of the road at this point lies a patch of water.
		1,400	8,600	Do.	A stream from 33° enst of north passes, and flowing south two miles, falls into the Brahmaputra river.
2	2810	7,500	\cdots	Do.	On left bank of the Chá-chu Sángpo (river), which comes from the north, but changes its course to south-cast at the distince of nbout three miles above this point, and four miles below empties itself into the Brahmaputra river.
		10,400	17,900	Do.	Tháng-ring-bo, on the left bank of the Brahmaputra. The valley hereabouts is very open.
3	2980	4,000	\cdots	Do.	A stream from N.E. falls into the Brabmaputra at this point.
		5,000	...	Do.	Barhmálîng camp, on left bank of Brahmaputra.
		6,000	15,000	Do.	On the left bank of the Brahmaputra, which appears to be flowing from the westward.
4	3150	9,000	\ldots	Do.	A stram from north floms past, nod falls into the Brahmaputra one mile south of this place.
		2,000	11,000	Do.	At this point there are hills on either side.

					Remameg.
5	29230	4,500	4,500	Gentle A	(Lapchá) ; pile of stoncs on summit of low hill.
6	27537	6,600	...	D	Totû camp.
		400	7,000	Level	
7	30022	111,800	14,800	Do.	Lapchá; pile of stones. The road gently ascends for about 1,000 paces.
8	28652	4,000	\cdots	Slight D	
		2,000	\ldots	Level	From this point distant two miles, bearing $257^{\circ} 30^{\prime}$, stands Gyáze monastery.
		3,500	9,500	Do.	
9	3150	10,000	10,000	Do.	To the right of the road is a low range of hills, while to the left lies a dangerous quagmire.
10	27537	2,000	2,000	Do.	On either side of the road there is a conical isolated hill.
11	20230	3,000	\ldots	Do.	Dûksûm Trijam (Gûrsá) camp.
		13,000	\cdots	Do.	The Chû Nágû stream, coming from 345°, flows past this point, and falls into the Brahmaputra river five miles below.
		12,000	28,000	Do.	Demár camp. On either side of the road there is a small lake, and to the north one mile is a range of low hills stretching from east to west, this rauge hus a very red appearance, giving rise to ite name Dák Máru (red stone).
12	2810	14,000	14,000	Do.	At foot of low range of hills, which look very black, giving rise to its name Dák Nagá (black stone).
12	$2 ¢ 230$	14,000	14,000	Do.	On left bank of Brahmaputra river, and at foot of Dák Máru hill.
14	3150	7,000	\ldots	Do.	On left bank of a amall strenm from north, which falls into the Brahmaputra one mile to the south.
		1,800	\cdots	Do.	On the left bank of a branch of the stream mentioned above.
		2,500 ,	...	Do.	On the left bank of a third branch of the stream mentioned above. This stream is called Roñg chut. Between the secund and third branches of the Rong chù stream are three low conical isolated hillis called Pûnsûn.
		7,000	...	Do.	At this point a strenm called Láro chî from north flows past, and falls into the Brahmoputra one mile distaut.
		1,400	19,700	Do.	At foot of a low hill, which is situated on the left bank of the Brahmaputra river.
15	3090	10,500	\ldots	Do.	On left bank of Brahmaputra river at Tamjan Tarjam. The river appears to be coming from the weat at this point. To the south and south-west of this point, distant about twelve miles, are seen very high snowy peake.

					Remares.
15	3090	9,500	\ldots	Level	On left bank of a stream from the W., which changes its course at this point to S.E., and falls into the Brahmaputra near Tamjan Tarjam.
		6,000	\ldots	Do.	Thá Khábjor camp, near foot of a low hill.
		1,000	2,700	Do.	
16	33152	2,000	2,000	Do.	Between low hills.
17	2870	4,000	4,000	Gentle A	At Lupchá ; pile of stones.
18	29230	14,000	14,000	Level	At the junction of two streams, one coming from north, and the other from N.W.
19	3260	5,300	5,300	Do.	Between the two streams.
20	30345	3,400	\ldots	Do.	Gyamzár cemp, on bank of stream.
		3,500	6,900	Do.	
21	32037	4,000	...	Do.	At the junction of two streams, one from $22^{\circ} \mathrm{E}$. of N., and the other from W.
		1,500	5,500	Do.	
22	28652	7,700	\cdots	Do.	
		4,C00	11,700	A	On summit of a hill at a Lapchá, or pile of stones, called Mariam Lá. Thermometrical observations were recorded at this place. This forms the boundary hetween the districts Nari-Khorsum and Dokhthol. South of this point, and distant about eight miles, is seen a very high snowy range, between which and this point the Brahmaputra flows.
23	2980	4,000	4,000	D	
24	24730	7,000	7,000	Gentle D	Between two small ranges of hills,
25	28662	4,500	\ldots	Level	A. stream coming from 22° flows on for one mile and then turns west, and enpties itself iuto the Gûngyud lake.
		10,000	\cdots	Do.	Ugro Tarjam which is one mile north of the extreme east end of the Gûngyud lake.
		800	\cdots	Do.	A stream flows past this point, coming from 24°, and falls intu the Gúngyud lake half a mile from hence.
		14,000	...	Do.	Rebo camp. From this point the Gûngyud lake lies half a mile south.
		7,000	..	Do.	A stream coming from north flows past, and empties itself into the Gûngyud lake half a mile from hence.
		1,000	..	Do.	At this point the extreme west end of the lake is distant about quarter of a mile. The breadth of this lake varies from oue and a-half to two miles. To the south of Gingyud lake are seen two snowy ranges, one very close, and the other about four miles distant. These ranges stretch from E. to W.

					Remarim.
	- ,				
25	28652	2,500	...	Slight A	Lapchá ; pile of stones.
		300	40,100	Level	
26	25845	2,700	\ldots	D	Nókche camp. A stream from north flows past in a south-westerly course.
		2,000	4,700	Gentle A	On summit of a low bill.
27	27537	2,000	\ldots	D	At foot of low hill.
		14,000	16,000	Level	On right bank of the Some (chû) stream.
28	23037	3,200	..	Do.	On right bank of Some chû stream. At this point the Pamburgi chu strearn from north falls into the Some chû.
		1,000	4,200	Do.	
29	28659	5,200	\ldots	Do.	A stream from north flows past into the Some chî one and a-half miles below.
		1,500	6,700	Gentle A	On summit of a low hill.
30	25845	4,000	4,000	Gentle D	Thokchan Tarjam (Yársá), on left bank of the Some chû. This stream bends in south considerably between No. 29 and this station. South of this point is visible a high snowy range, distant about six miles; between this range and this point the Brabmaputra flows.
31	2980	8,000	8,000	Level	On right bank of Some chû strenm, which runs between two low ranges of hills.
32	25737	2,000	\cdots	Do.	On right bank of Some chû stream, which from this point flows 257°, and empties itself into the Mánsarowar lake.
		3,100	5,100	Do.	
33	3150	300	\ldots	Do.	A stream from $15^{\circ} \mathrm{E}$. of N . flows past, and falls into the Some chù about half a mile below.
		5,000	\ldots	Do.	From this point the Kailás mountain is north-west, and is distant about twenty-four miles. Another very bigh peak, 215° bearing, is distant about twenty miles, called Gárlá.
		1,000	6,300	Do.	A stream from north-cast flows past into the Mánsarowar lake two miles from hence.
34	30345	900	\cdots	Do,	Sarniah-Uniah camp.
		1,400	...	Do.	A stream from $32^{\circ} \mathrm{E}$. of N. flows past into the Mánanrowar lake one and a-half miles from hence.
		1,100	...	Do.	Close to a small lake called Gorgel cho a small stream issues from this patch of water, and falls into tho last stream mentioned.
		3,500	...	Do.	At the south-west end of the Gorgel cho lake.

					Remates.
34	$\begin{gathered} \circ \\ 30345 \end{gathered}$	3,100	..	Level	About four miles south-west, situated at the foot of a low hill, stands the Láng-bo-na monastery, on the banks of the Mánsarowar lake.
		13,500	23,500	Do.	A stream from N.E. llows south for some distance, and then changiug its course to W., falls into the Langcho lake.
35	2980	21,000	\ldots	Do.	The Joñg-chû stream from 32° flows past into the Láng-cho lake some distance south.
		4,600	25,600	Do.	Darchan, A stream coming from north flows past into the Jong-chû stream. Darchan is situated at the foot of the Kailás mountain; it boasts of a large official residence. Six miles from Darchan, and 172° bearing, is situated the larkhá Tarjam; three miles from this latter point lies the extreme east end of the Láng-cho lake. The distance between the two lakes Mánsarowar and Láng-cho is two and a-half miles. Láng-cho lake is the source of the Sutlej river, called in these parts Láng-jan Khámbá. The point where the Joñg-chû stream enters the Láng-cho lake bears from this point 207°, and is distant about six miles. Observations for latitude and thermometrical olservatious were taken at Darchan.
36	23037	3,000	\ldots	Do.	On the left bank of the Sarsît-chû, which comes from the north, and falls into the Joñg-chû.
		6,800	\ldots	Do.	On bank of Kalap-chû stream, which flows from the north, and falls into the Joñg-chû two miles southeast of this point.
		6,000	\ldots	Do.	Loñg-goĩg camp.
		800	\ldots	Do.	At the source of the Sutlej river, N.E. and of the Láng-cho lake, which is also called the Ríkus-Tail.
		12,000	\ldots	A	
		2,000	30,600	Great A	On summit of high hill. This hill runs sonth-east for four miles, and terminates near the Ling-cho lake.
37	24730	2,000	...	Geutle D	At the source of a small stream, which flows S.E. for four miles, and then falls into the Láng-cho.
		2,300	4,300	\ldots	A camping place (name not ascertained). The road ascends at the commencement, and then descends.
38	30345	3,500	3,500	Level	
39	2190	4,000	\ldots	A	On a emall hill.
		3,000	7,000	D	At foot of bill.
40	$2 \cdot 17^{\prime} 30$	13,000	13,000	Level	At a distance of two to three miles from this point on either side of the rond are hills. The high road from Darchan via Chûmûrshala comes from 35°.
41	21345	3,800	3,800	Do.	
42	24163	4,000	4,000	Do.	At foot of a low hill.

					Remaris.
43	24730	7,000	7,000	Level	Four miles from this point, and bearing 341°, stands ruined fort, called Gyánimá Khar.
44	3260	4,200	...	Do.	A stream issuing from a small lake four miles south flows past in a north-westerly direction. This lake is called the Tárá cho.
		4,800	9,000	Do.	Gyánimá Mandi-(Haut), ut foot of small hill, is a great mart during the rainy seasou. Observations for latitude and thermometrical observations were taken here.
45	2.330	11,300	11,300	Do.	South of this point about ten miles is seen a very high snowy range of mountains bounding the plain which is very open. To the north, and very close, is a low hill stretching N.E. for about three miles.
46	270	3,400	\ldots	Do.	At northern foot of Dák Kárpo hill. Distant from this point one and a-half miles, and bearing 62°, stands a very high and remarkable conical hill.
		600	4,000	Do.	At foot of Dák Kárpo hill,
47	23037	3,500	3,500	Do.	The Darmiyanti-cha (from a high snowy range ten miles south) flows past this point, and, followiug a northerly course for twenty-four miles, falls into the Sutlej. Bearing 67° E. of N., and distant threequarters of a mile, stands a high conical hill. During the rainy season the inhabitants bring to this place salt, borax, and wool, and barter them lor grain, sugar, and cloth.
48	2530	6,000	...	Do.	On right bank of the Gûniangti-chû from the south, which flowing past in a N.E. direction, joins the Chû-Nágo six miles from hence. The Chû-Náyo flows one mile N.E., after receiving the water of the Gûniangti-cha, then falls into the Dármijanti-chît. At the junction of the Gûniangti-chû with the Dármiyanti-chû stands a conical isolated bill called Jiná Khar.'
		4,000	10,000	Do.	At foot of Thamba Dhár hill.
49	28652	3,400	3,400	Gentle A	Thamba Dhár, pile of stones on summit of hill. This hill stretches four miles north and five miles south, meeting a spur of the snowy range. Distant seven miles, and bearing 10° from hence, is Gombá Chen Dang, a grazing-ground. A high snowy range is seen from here, distant about thirty miles N.E.
50	2360	2,400	2,400	D	At foot of hill.
51	25845	4,500	4,500	Level	On right bank of Chû Nágo stream, which comes from south.
52	27537	4,400	.	Do.	A stream passes this point coming from 200°, and flows north-eest, then falls into the Máne Manthangá lake six miles from hence.
		1,500	5,900	Do.	On either side of the road at this point are bills.
53	24730	2,000	2,000	Do.	At Thájnang (Lam); a bazar during the rainy senson. The high road from Juhárgáti (south) joins at this point.

$\begin{aligned} & \stackrel{5}{E} \\ & \text { E. } \\ & \text { En } \\ & \text { in } \end{aligned}$					Дemarks.
54	33730	4,500	...	A	On summit of hill, which stretches from north to south. At foot of this hill, to the east, is situated Hûniá Thajañ.
		2,900	7,400	Gentle D	
55	3600	4,700	4,700	Level	At northern end of hill. Distant five miles from hence, bearing 40°, is situated a high hill.
56	3430	14,000	14,000	Do.	On left bank of Tukpû stream, at Ship Chalam camp. The Tokpú comes from the south, and flowing north for a distance of six miles, joins the Sutlej river.
57	30345	1,000	*-.	Do.	A stream from 200° flows prst to the N.E., and falls into the Tokpú stream three and a-half miles from hence.
		8,800	\cdots	Do.	
		27,300	37,100	Do.	On right bank of Nûkchán (chû) stream, which comes from 206°, and flows north-cast. To S.W., and distant eight miles, in seen a snowy range of mountains.
58	450	6,500	6,500	Do.	At Doñgpâ village, on right bank of Nûkchánchá streain. The Nûkchánchû stream falls into the Sutlej river two and a-half miles to the N.E. Note.-Owing to the interference of the Bhotiyas the Houte-Survey was not carried beyond this last point. This point was however connected with Kumaon subsequently by another Route-Survey which was carried up to Gartokh.

LXIV

Observitions for Latitude taken in Nepal, Tibet, see.-(Continued).

Olservations for Latitude taken in Nepal, Tibet, \&ec.-(Continued.)

Observations of the Boiling Point in Nepal, Tibet, \&ic.

			®	Station.	Thermometer.		Thermometer.			Remames.
			-		No.	Boiling Point.	No.	In $\Delta \mathrm{ir}$.		
	$\begin{aligned} & 1867 . \\ & \text { June } \end{aligned}$	3	$\begin{array}{cc}h & m \\ 3 & 0\end{array}$	Mussoorie G. T. S. Office,	22	201•18	\ldots	$81 \cdot 0$...	Height determined trigonometricly. 6923.2.
	$\begin{aligned} & 1865 . \\ & \text { April } \end{aligned}$	$\left\{\begin{array}{l}14 \\ 18\end{array}\right.$	$\left.\begin{array}{rrr}0 & 35 \\ 20 & 28\end{array}\right\}$	Almorah,	7	203.25	...	64. 0	...	Do. do. $5400 \cdot 0$
1	March	10	045	Khatmandù city, on left bank of Bishnomati river near lower bridge, in serai.	22	206.00	10	67.50	4,044.5	Clear sky; gentle south wind blowing. This point is about 200 feet below the Residency, which, according to these observations, would be 4,244 feet.
2	"	16	2018	Do.	"	206.25	"	54.75	...	Clear sky ; no wind blowing.
3	"	23	$18 \quad 7$	Ramcha village, on the road, ...	"	203.00	"	53.00	5,874.9	Gentle east wind blowing.
4	"	27	1658	Raswágarhí, on the right bank of Lendichú nadi, on the boundary line between Nepal and Tibet.	"	$202 \cdot 95$	"	55.50	5,901•0	N.E. wind blowing ; sky somewhat cloudy.
5	April	5	2224	Deobung, on the serai,	"	$207 \cdot 70$	"	$70 \cdot 00$	3,144*0	South wind blowing; sky cloudy near the horizon only.
6	July	21	2041	Kiroĩg town, on Chang Chu's house,	7	196.80	6	64:50	9,074•6	S.E. wind blowing ; sky cloudy on all sides.
7	"	31	150	Do.	"	197.00	"	71.50	\cdots	South wind blowing; sky cloudy near the horizon; bright suoshine.
B	August	14	149	Thotang village,	"	$194 \cdot 20$	"	$58 \cdot 50$	10,619•1	Strong S. wind blowing; rain falling.
9	"	16	2335	Lajûk Thumbá, top of pass, ...	"	186.00	"	47.50	15,391•8	Strong W. wind blowing; slight rain falling.

8 0 0 0 0 0 0 0 0 0 0 0			$\dot{\circ}$					$\dot{\circ}$		$\stackrel{\circ}{\square}$		\dot{A}		
$\begin{aligned} & \text { H } \\ & \stackrel{+}{+} \\ & \underset{\sim}{*} \end{aligned}$		然	$\begin{aligned} & \text { ơ } \\ & \text { ì } \\ & \text { अ } \end{aligned}$		$\begin{aligned} & \dot{\hat{H}} \\ & \dot{\theta} \\ & \underset{j}{2} \end{aligned}$	$\begin{aligned} & \text { H } \\ & \stackrel{y}{9} \\ & \text { H } \end{aligned}$	．			；	$\begin{aligned} & \text { 䠞: } \\ & \underset{\sim}{7} \end{aligned}$	！	$\vdots \stackrel{\infty}{\stackrel{\infty}{\underset{\sim}{\infty}}} \stackrel{\infty}{\infty}$	：
$\begin{gathered} \text { nu } \\ \stackrel{\rightharpoonup}{1} \end{gathered}$		$\begin{aligned} & \text { Oi } \\ & \text { in } \end{aligned}$	只	$\stackrel{\sim}{\oplus}$	啇	$\stackrel{\text { n }}{\substack{\dot{\phi}}}$	$\begin{aligned} & \text { B } \\ & \stackrel{8}{\text { - }} \end{aligned}$	$\begin{aligned} & \circ \\ & \text { ì } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { 㫛 } \\ & \text { 范 } \end{aligned}$	$\begin{aligned} & \text { セัָ } \\ & \dot{\oplus} \end{aligned}$	$\begin{array}{cc} 10 \\ \text { 年 } \\ \text { N } \\ \text { N } \end{array}$	$\begin{aligned} & \text { O} \\ & \stackrel{\circ}{\infty} \\ & \text { Cil } \end{aligned}$	$$	
：	$=$	，	$=$	\cdots	$=$	＝	＝	＊	＝	＝	$=$＝	＝	－	＝
$\begin{aligned} & \stackrel{\circ}{9} \\ & \stackrel{\rightharpoonup}{9} \end{aligned}$		$\stackrel{\circ}{8}$ ì \sim	$\begin{aligned} & \text { O} \\ & \text { ì } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { 8/ } \\ & \stackrel{1}{9} \end{aligned}$	$\begin{aligned} & \text { 윰 } \\ & \text { ì } \end{aligned}$	$\begin{aligned} & \text { ọ } \\ & \text { im } \end{aligned}$	$\begin{aligned} & \stackrel{9}{0} \\ & \stackrel{\rightharpoonup}{i} \\ & \sim \end{aligned}$	－	$\begin{aligned} & \stackrel{\otimes}{1} \\ & \dot{\sim} \\ & \text { in } \end{aligned}$	$$	$\begin{array}{ll} \stackrel{29}{\circ} & \stackrel{8}{9} \\ \dot{9} & \dot{9} \end{array}$	$\begin{aligned} & \text { oి } \\ & \text { 商 } \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{\mathbf{N}} \\ & \dot{\sim} \end{aligned}$
＊	＝＝	$=$	$=$	＝	＝	＝	＝	＝	，	－	$=$	＝	＝	$=$
					Tallalabrong，near Dong，		： $\stackrel{\circ}{\circ}$	$\stackrel{\circ}{\circ}$		 병웅 曾雪： A 踢		$\stackrel{\circ}{\square}$		
	$\begin{array}{ll} \text { 品 } & \text { 合 } \\ 0 & 0 \\ \text { N } \end{array}$		$\underset{\sim}{\infty} \underset{\sim}{\infty}$	$\stackrel{\wedge}{\circ}$	$$	－	$\begin{aligned} & \text { O} \\ & \text { ה } \end{aligned}$		$\begin{aligned} & \text { O} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{\otimes}{\otimes} \\ & \underset{\sim}{9} \end{aligned}$	$\begin{array}{ll} 0 & 0 \\ \text { H } & 0 \end{array}$	$\begin{aligned} & \circ \\ & \varphi \\ & \hline \end{aligned}$	$\begin{array}{cc} 0 & 0 \\ \text { 유 } & \circ \end{array}$	
A	9	เึ	－	ล	\cdots	$\stackrel{ }{ }$	ผ	$\stackrel{\sim}{\sim}$	แ	∞	\＃＝	$=$	＝	$\stackrel{\text { ¹ }}{ }$
	＝＝	$=$	$=$	＝		$\begin{gathered} \stackrel{\rightharpoonup}{0} \\ \stackrel{\rightharpoonup}{0} \end{gathered}$	$=$	$=$	$\begin{aligned} & \text { 呂 } \\ & \text { 菦 } \end{aligned}$		＝	$=$	＝	
9	\Rightarrow 국	9	\＃	$\xrightarrow{3}$	9	\wedge	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{-}$	\％	ה	๙	A	ค	－

Observations of the Doiling Point in Nepal，Tibet，（Ec．－（Continned．）

			 $\stackrel{\text { à }}{\text { ® }}$						$\cdot \kappa \text { К }$				West wind ；clear sky．
		；					$\begin{aligned} & \text { 渻 } \\ & \underset{\sim}{7} \end{aligned}$		$\begin{aligned} & \hat{H} \\ & \underset{\sim}{H} \\ & \underset{H}{*} \end{aligned}$				$\begin{aligned} & \stackrel{\infty}{0} \\ & \stackrel{0}{0} \\ & \stackrel{y}{0} \\ & \end{aligned}$
		$\begin{aligned} & \text { 易 } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \circ \stackrel{0}{\circ} \\ & \dot{\circ} \end{aligned}$	$\begin{aligned} & \text { O. } \\ & \text { in } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { Pi } \\ & \text { A } \\ & \text { An } \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\begin{aligned} & \circ \stackrel{\circ}{0} \\ & \hline \stackrel{0}{0} \end{aligned}$	$$	¢	$\stackrel{\stackrel{\rightharpoonup}{\infty}}{\substack{0}}$	$\begin{aligned} & 8 \\ & \text { in } \\ & \text { in } \end{aligned}$		$\begin{aligned} & \text { O} \\ & \text { A } \end{aligned}$
	穴	\bigcirc	＝	$=$	$=$	\％	＝	＝	＝	$=$	＝		＝
		$\stackrel{\stackrel{\circ}{\oplus}}{\stackrel{\rightharpoonup}{\oplus}}$	$\stackrel{\text { O}}{\stackrel{\rightharpoonup}{\mathrm{A}}}$	$\begin{aligned} & \stackrel{\oplus}{\mathbf{H}} \\ & \dot{\oplus} \end{aligned}$	－	$\begin{aligned} & \text { O} \\ & \stackrel{\rightharpoonup}{\mathbf{H}} \end{aligned}$	$\begin{aligned} & \text { ¢ } \\ & \stackrel{\oplus}{-1} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\otimes}{\dot{0}} \\ & \dot{⿴} \\ & \text { in } \end{aligned}$		$\begin{aligned} & \text { O} \\ & \text { io } \\ & \text { in } \end{aligned}$			$\begin{aligned} & \stackrel{+}{4} \\ & \stackrel{\text { ® }}{-1} \end{aligned}$
	$\dot{8}$	－	＝	＝	＝	＝	$=$		＝	＝			＝
				®									$\begin{aligned} & \text { Jangláche citg, in Giakbang (build } \\ & \text { ing for the accommodation of } \\ & \text { CLinese officials). } \end{aligned}$
		$\begin{aligned} & \leqslant 0 \\ & \approx-1 \end{aligned}$	$\begin{aligned} & 0 \\ & \# \end{aligned}$	$\stackrel{O}{0}$	\bigcirc	\％	\circ		$\xrightarrow{\circ}$	O \sim	－		$\begin{aligned} & \stackrel{\circ}{\infty} \\ & \infty \end{aligned}$
		\odot	：	$=$	$=$	$=$	ลิ	＊	คั	$=$	N		\pm
				$=$		$=$	首	＝	$=$	$=$	＝		$=$
woupers jo ${ }^{\circ} \mathrm{N}$		$\stackrel{\sim}{\square}$	81	\％	\cdots	\％	\％	$\ddot{\square}$	号	¢	今	¢	涌

Observations of the Boiling Point in Nepal, Tibet, \&c.-(Continued).

			aj	Station.	Taermoyeter.		Thermometer.			Remaris.
					No.	Boiling Point.	No.	In Air.		
15	$\begin{aligned} & \text { 1sisis. } \\ & \text { Oet. } \end{aligned}$	29	$\begin{array}{lc} h & m \\ 6 & 0 \end{array}$	Jhulghát, on bank of the Kali river.	22	$210 \cdot 40$	10	$59 \cdot 50$	1,650.6	
16	Nor.	11	630	Petoragarh, near bangla of khazanchi.	"	203.40	"	46.25	5,642 $\cdot 9$	
17	"	13	70	Do.	"	$203 \cdot 40$	"	46.75	\cdots	
18	"	15	70	Do.	"	203-40	"	47.75	\ldots	
19	"	20	60	Do.	"	203.50	"	44.25	...	
20	"	28	130	Bank of Sarjù river, near bridge, ...	"	208.50	"	60.0	2,727.4	
21	"	29	030	Burjageshur, at temple on the hill.	"	$200 \cdot 40$	"	55.75	7,374.7	

Observations of the Temperature of the Air at Shigatze, or Digarcha, a large town in Great Tibet, 11,800 feet above the sea.

Date.	$\dot{\vec{y}}$			Remarke.	
1 thi November, 1865.	1	6	41.50	Very slight wind from S.W. ; clear sky.	
"	2	\ldots	43.25	Wind Iulled.	... do.
"	3	\cdots	44.25	Slight wind from	W.; do.
"	4	\ldots	49.75	Do.	W.; do.
"	5	\ldots	49.50	Do.	W.; do.
"	6	\ldots	50.0	Do.	W.; do.
"	7	\cdots	50.50	Do.	W.; do.
"	8	\ldots	49.0	Strong wind from	W.; do.
"	9	...	48. 0	Do.	W.; do.
"	10	\cdots	47.25	Slight wind from	N.; do.
"	11	\cdots	44.50	Do.	S.E.; do.
"	12	\ldots	43. 0	Do.	S.E.; do.
"	13	\ldots	40.25	Do.	S.; do.
"	14	...	38.0	Do.	E. ${ }^{\text {d }}$ do.
"	15	\ldots	$34 \cdot 25$	Do.	W.; do.
"	16	\cdots	32.50	Do.	N. ; do.
"	17	\ldots	31.75	Very slight wind from N	N.E. ; do.
"	18	\ldots	30.25	Do.	N.E. ; do.
"	19	\ldots	$33 \cdot 50$	Do.	N.E. ; do.
"	20	\ldots	34.50	Do.	N.E. ${ }^{\text {do }}$ do.
"	21	\cdots	34.25	Wind lulled.	... do.
"	22	\ldots	36.50	Do.	do.
"	23	\ldots	38.75	Do.	do.
"	24	\ldots	$41 \cdot 0$	Do.	do.
15 th	1	\ldots	43:50	Do.	do.
"	2	\cdots	$45 \cdot 25$	Do.	do.
"	3	\ldots	45.75	Do.	do.
"	4	\ldots	46-25	Do.	do.
"	5	\ldots	44.50	Do.	do.
"	6	...	$43 \cdot 50$	Do.	do.
"	7	\ldots	47.0	Do.	... do.

Datr.	过			Remares.		
15th November, 1865.	8	6	45.50	Wind lulled.	... cla	clear sky.
"	19	\ldots	32.25	Do.	...	do.
"	20	\ldots	32.50	Do.	\ldots	do.
"	21	\ldots	32.50	Do.	...	do.
"	22	\ldots	33.50	Do.	\ldots	do.
"	23	\cdots	34.75	Do.	...	do.
"	24	\ldots	36. 0	Do.	...	do.
16th	1	\cdots	38.75	Wind slight from	N.E. ;	do.
,	2	\ldots	39.25	Wind lulled.	...	do.
"	3	..	41.50	Do.	...	do.
"	4	\ldots	42.50	Do.	...	do.
"	5	\ldots	41.25	Do.	...	do.
"	6	\ldots	42.25	Wind slight from	N. ;	do.
"	7	\cdots	$44 \cdot 25$	Wind lulled.	...	do.
"	8	\ldots	41.25	Wind slight from	W. ;	do.
"	9	\cdots	39.25	Do.	S. ;	do.
"	10	\ldots	39. 0	Do.	S. ;	do.
"	19	\ldots	$30 \cdot 75$	Do.	S.;	do.
"	20	\ldots	30.75	Do.	S. ;	do.
"	21	\ldots	30.75	Do.	S. ;	do.
"	22	\ldots	32.75	Wind slight from	S. ;	do.
"	23	\ldots	35.0	Wind lulled.	...	do.
"	24	\ldots	37.50	Do.	...	do.
1ith	1	\ldots	39:50	Slight wind from	S. ;	do.
"	2	\ldots	42.75	Wind Iulled.	...	do,
"	3	\ldots	43.50	Slight wind from	W.;	do.
"	4	...	49.50	Hurricane from	W.;	do.
"	5	\ldots	46.75	Do.	W. ;	do.
"	6	...	47. 0	Very slight wind fron	W. ;	do.
"	7	\ldots	48. 0	Strong wind from	W.;	do.
"	8	\ldots	46.50	Do.	W. ;	do.
"	9	\ldots	45. 0	Slight wind from	N.W. ;	do.
"	10	\ldots	$43 \cdot 25$	Strong wind from	S. ;	do.
"	19	...	$29 \cdot 25$	Slight wind from	W.;	do.
"	20	\ldots	32.50	Do.	E. ;	do.

Date.	$\begin{aligned} & \text { 妄 } \\ & \substack{3 \\ \hline} \end{aligned}$			Remares.	
17th November, 1865.	21	6	33.25	Slight wind from	E. ; clear aky.
"	22	\ldots	$34 \cdot 25$	Do.	S.E. ; do.
"	23	\ldots	$30 \cdot 50$	Strong wind from	S.; do.
"	24	\ldots	$40 \cdot 25$	Do.	S.; do.
18th	1	\cdots	43.0	Do.	S.W.; do.
"	2	\ldots	45.0	Do.	S.W.; do.
"	3	\ldots	44.25	Slight wind from	W.; do.
"	4	\ldots	44.50	Do.	W.; do.
"	5	\cdots	43.25	Do.	W.; do
"	6	...	41.50;	Do.	W.; do.
"	7	\ldots	$42 \cdot 25$	Do.	W.; do.
"	8	\ldots	41.0	Do.	W.; do.
"	9	\ldots	37.25	Do.	N.; do.
"	10	\ldots	36.75	Do.	N.; do.
"	19	\ldots	24.25	Do.	N.W.; do.
"	20	\cdots	20.0	Do.	N.W.; do.
"	21	\ldots	27.0	Do.	S. ${ }_{\text {; }}$ do.
"	22	\cdots	$28 \cdot 50$	Do.	S. ; do.
"	23	\ldots	30.0	Do.	S. ${ }^{\text {d }}$ do.
"	24	\cdots	31.75	Do.	S. ; do.
19th	1	\ldots	$34 \cdot 25$	Do.	S. ; do.
"	2	\ldots	36.50	Wind lulled.	... do.
"	3	\ldots	35.75	Slight wind from	W.; do.
"	4	\cdots	36.50	Wind lulled.	do.
"	5	\cdots	36. 0	Slight wind from	W.; do.
"	6	\cdots	36.25	Do.	W. ; do.
"	7	\cdots	42.0	Do.	W.; do.
"	8	\ldots	40.0	Do.	W.; do.
"	9	\ldots	37. 0	Do.	W.; do.
"	10	\ldots	36.50	Do.	W.; do.
"	19	\ldots	24.75	Do.	N.; fleecy clouds.
"	20	\cdots	26.50	Do.	E. ${ }^{\text {d }}$ do.
"	21	\ldots	26. 0	Strong wiud from	N.; do.
"	22	\ldots	28.25	Slight wind from	$\text { N. ; }\left\{\begin{array}{c} \text { light clouds only to } \\ \text { south. } \end{array}\right.$
"	23	\ldots	29.50	Very slight wind fro	N. ; clear sky.

Date.	$\begin{aligned} & \text { H } \\ & \text { 包 } \end{aligned}$			Remafig.
19th November, 1865.	24	6	32.50	Very slight wind from N.; sky clear.
20th "	1	\ldots	33.75	Do. W.; do.
"	2	\cdots	35.0	Slight wind from W.; do.
"	3	...	36.50	Wind lulled, ... light clouds.
"	4	\cdots	36.50	Slight wind from W.; do.
"	5	\cdots	36. 0	Wind lulled. $\quad . . \quad\left\{\begin{array}{c}\text { rather heavy clouds } \\ \text { all over. }\end{array}\right.$
"	6	\ldots	35:50	Do. ... do.
"	7	\cdots	$39 \cdot 50$	Slight wind from W. \quad sky clear.
"	8	\ldots	37.75	Do. N.W.; elouds to E.
"	9	\ldots	40.0	Very hervy wind from W.; sky clear.
"	10	\ldots	39.25	Strong wind from W; sky cloudy to W.
"	19	\cdots	30. 0	Do. N.W.; aky very clear.
"	20	...	$30^{\circ} 0$	Do. N.W.; do.
"	21	\cdots	32.50	Do. N.W.; do.
"	22	..	34.50	Slight wind from W.; do.
"	23	\cdots	$35 \cdot 75$	Do. W.; $\left\{\begin{array}{l}\text { here and there light } \\ \text { clouds. }\end{array}\right.$
"	24	\ldots	38. 0	Strong wind from N.; $\left\{\begin{array}{l}\text { aky obscured by light } \\ \text { clouds. }\end{array}\right.$

Observations of the Temperature of the Air at Lhásá, the capital of Great Tibet, 11,700 feet above the sea.

Date.				Remareg.		
9th February, 1863.	1	6	4350	Strong wind from		here and there clouds.
"	2	\cdots	41.75	Do.	W.;	do.
"	3	\cdots	40.50	Do.	W.;	do.
"	4	\cdots	$40 \cdot 50$	Slight wind from	W ;	clouds all over.
"	5	...	39.25	Do.	S.;	do.
"	6	...	38.50	Do.	S. ;	do.
"	7	\cdots	36. 0	Do.	N. ;	clouds nenr horizon.
"	8	\ldots	35. 0	Do.	E. ;	do.

	Date.	晏			Remarig.		
11th February, 1866.		4	6	43. 0	Hurricane from Do.	S.;	very cloudy all over. do. $\left\{\begin{array}{l} \text { at this hour it } \\ \text { snowed on all the } \\ \text { hills saround, and } \\ \text { slightly in Lhass. } \end{array}\right.$
	"	5	\ldots	42.0		S. ;	
	"	6	\ldots	$40 \cdot 50$	Slight wind from	W.;	
	"	7	\cdots	40.25	Do.	W.;	
	"	8	\ldots	39.75	Do.	W.;	
	"	9	\ldots	40.0	Do.	W. ;	
	"	10	\ldots	40.25	Do.	W.;	
	"	19	\ldots	38.0	Do.	W.;	
	"	20	\ldots	39.0	Do.	W.;	$\left\{\begin{array}{l} \text { enowed rather more } \\ \text { in Lhásí, but did } \\ \text { not collect on the } \\ \text { ground. } \end{array}\right.$
	"	21	...	38. 0	Do.	W.;	
	"	22	\cdots	37. 0	Do.	W.;	do.
	"	23	\ldots	37.50	Do.	E.;	$\left\{\begin{array}{l} \text { cloudy towards ho- } \\ \text { rizon only, zenith } \\ \text { clear. } \end{array}\right.$
	"	24	\ldots	39.50	Do.	E.;	do.
12th	"	1	\ldots	40.0	Very strong wind from W.; sky obscured by clouds.		
	"	2	\ldots	40.0	Do. S.; cloud		
	"	3	\ldots	40.0	Do.	E. ; do.	
	"	4	\ldots	40.0	Do.	S.;	do.
	"	5	\ldots	39.50	Do.	S.;	do.
	"	6	\ldots	39.50	Do.	S.;	do.
	"	7	\ldots	37.75	Slight wind from	S.;	snowed slightly.
	"	8	\ldots	$35 \cdot 0$	Do.	W.;	do.
	"	9	\ldots	$34 \cdot 50$	Do.	W.;	do. do.
	"	10	\ldots	$35 \cdot 50$	Do.	W.;	
	"	19	\cdots	29.75	Do.	N. ;	$\left\{\begin{array}{c} \text { horizon cloudy ; } \\ \text { woke, nond saw } \frac{1}{2} \\ \text { inchof fnowonene he } \\ \text { ground, which hand } \\ \text { fallen overnight. } \end{array}\right.$
	"	20	\ldots	32. 0	Do.	N.;	
	"	21	\ldots	33. 0	Wind Julled.	\ldots	$\left\{\begin{array}{c} \text { cloudy, towards bo- } \\ \text { rizon sunny. } \end{array}\right.$
	"	22	\ldots	33.50	Do.	...	do.
	"	23	...	$35 \cdot 0$	Do.	...	do.
	"	24	\ldots	36.50	Slight wind from	W. ;	$\left\{\begin{array}{l}\text { sky } \\ \text { ecured ly } \\ \text { clouds. }\end{array}\right.$ sky very cloudy.
13th	"	1	...	$\begin{aligned} & 37 \cdot 0 \\ & 35 \cdot 0 \end{aligned}$	Do.	N.W. ; sky very cloudy.	
	"	2	\ldots		Hurricane	N. ;	do.

	Datte	$\begin{aligned} & \text { 言 } \\ & \text { 品 } \end{aligned}$			Remarig.		
13th February, 1866.		3	6	34.75	Huricane	N.;	sky very cloudy.
"		4	\ldots	33.50	Do.	N.;	do.
"		5	...	$33 \cdot 50$	Do.	N. ;	do.
"		6	\ldots	33.50	Slight wind from	N.;	$\left\{\begin{array}{l} \text { sky clear overhead } \\ \text { only. } \end{array}\right.$
"		7	\cdots	33. 0	Do.	W.;	sky clear.
"		8	...	$32 \cdot 50$	Do.	N.;	do.
"		9	...	32.0	Do.	N. ;	do.
"		10	...	31.0	Do.	E. ;	do.
"		19	...	26.0	Do.	E. ;	do.
"		20	\ldots	26.75	Do.	E. ;	do.
"		21	\cdots	28.0	Do.	E. ;	do.
"		22	\cdots	30.0	Do.	E. ;	do.
"		23	\cdots	31.0	Very slight wind from	E.	do.
14th	"	24	\ldots	33. 0	Noon, Do.	E.;	do.
	"	1	\cdots	34.75	Very slight wind from	N. ;	here and there clouds.
"		2	\ldots	$36 \cdot 50$	Do.	N.;	do.
"		3	\ldots	36.50	Do.	N.;	do.
"		4	\ldots	37.50	Do.	N.E.;	eky very cloudy.
"		5	\ldots	37.50	Do.	N.E. ;	do.
"		6	\cdots	35-50	Wind lulled.	...	thin clouds all over.
"		7	\ldots	36.75	Very slight wind from	W.;	do.
"		8	\cdots	36.0	Wind lulled.	...	aky clear.
"		9	\ldots	35.0	Do.	...	do.
"		10	...	33.75	Do.	...	do.
"		19	...	27.0	7 A.M., wind slight from	E.;	do.
"		20	\cdots	28.50	Do.	E.	do.
"		21	...	30.50	Do.	E. ;	do.
"		22	\ldots	32. 0	Do.	E. ;	do.
"		23	...	33. 0	Do.	E. ;	do.
		24	...	35.0	Wind lulled.	...	do.
15th	"	1	\ldots	37. 0	Very slight wind from	a N.W.;	$\left\{\begin{array}{l} \text { white cloudstowards } \\ \text { horizon. } \end{array}\right.$
	"	2	\cdots	38.75	Do.	N.W.;	do.
	"	3	\cdots	$43 \cdot 50$	Do.	N.W.;	do.
	"	4	\ldots	43:50	Do.	N.W.;	do.
	"	5	\ldots	43.75	Strong wind from	W.;	$\left\{\begin{array}{l} \text { here and there only } \\ \text { clouds. } \end{array}\right.$

Date.	$\begin{aligned} & \text { 葿 } \end{aligned}$			Remarig.		
21st February, 1866.	23	6	43. 0	Very strong wind from W. ; sky clear.		
"	24	\ldots	43. 0	Do. W.; do.		
22nd	1	\ldots	$45 \cdot 50$	Do.	W.;	
"	2	\cdots	45.75	Do. W	W.;	do.
"	3	\cdots	45. 0	Do.	W.;	do.
"	4	\ldots	44.75	Slight wind from	W.;	$\left\{\begin{array}{l} \text { light clouds obscur- } \\ \text { ing sky. } \end{array}\right.$
"	5	...	44.75	Do.	W. ; do.	
"	6	\cdots	43. 0	Do.	N. ;	
"	7	...	$42 \cdot 50$	Do.	N.;	
"	8	\cdots	40.50	Do.	N. ;	do.
"	9	\cdots	$40 \cdot 50$	Do.	N. ;	do.
"	0	\cdots	37.50	Do.	N. ;	do.
"	19	\cdots	32.0	7 A.M., Do.	E. ;	sky clear.
"	0	\ldots	$32 \cdot 50$	Do.	E. ${ }^{\text {d }}$ do.	
"	21	\ldots	34.50	Do. E	E.; do.	
"	22	\cdots	36. 0	Do.	E. ;	do.
"	23	\ldots	37. 0	Wind lulled.	...	do.
"	24	\ldots	40.0	Do.	...	do.
23 rd	19	\cdots	36.0	Slight wind from E	E.	do.$\begin{aligned} & \left\{\begin{array}{c} \text { heavy clouds obscur- } \\ \text { ing sky. } \end{array}\right. \\ & \text { sky clear. } \end{aligned}$
24th	6	\ldots	45.75	Do.	$\begin{aligned} & \text { W.; } \\ & \text { E. } \end{aligned}$	
"	19	\cdots	35.0	Do.		
25th "	6	\ldots	45.75	Wind lulled.	...	heavy clouds all over. sky clear.
"	19	\cdots	33.50	Slight wind from	E. ;	
26th "	6	\cdots	45.75	Do.	W.;	clouds obscuring sky.
"	19	\ldots	33:50	Strong wind from E	E.;	sky clear.
27tb	0	\cdots	$45 \cdot 75$	Wind lulled. Slight wind from	E.;	clouds obscuring sky. aky clear.
"	19	\ldots	34.0			
28th	6	...	$45 \cdot 50$	Very slight wind from W. ;		clouds all over.
"	19	\cdots	33.50	Do.	E.;	here and there clouds.
1st March, 1866.	6	\ldots	43.50	Do.	E. ;	clouds all over. sky clear.
"	19	\cdots	35.50	Do.	E.	
2nd	6	...	43.50	Do.	E.;	clouds all over.
"	19	\ldots	36.25	Do.	E.;	sky clear. clouds near horizon. sky clear.
3rd	6	\ldots	47.25			
"	19	...	36:50	Do.		

	Date.	$\begin{aligned} & \dot{3} \\ & \frac{3}{3} \end{aligned}$			Remares.		
4th March, 1866.		6	6	$48 \cdot 25$	Slight wind from	N.W. ; clouds near horizon.	
	"	19	\ldots	37. 0	Do.	E.;	sky clear.
5th	"	6	\cdots	$48 \cdot 50$	Do.	W.;	here and there clouds,
	"	19	\cdots	$37 \cdot 50$	Do.	E. ;	do.
6th	"	6	\cdots	50.0	Do.	W.;	ds.
	"	19	\ldots	42. 0	Do.		sky clear.
7th	"	6	\ldots	49.75	Du.	N.;	clouly.
	"	19	\ldots	$41 \cdot 50$	Do.		sky clear.
8th	"	6	\ldots	48.75	Wind lulled.	...	cloudy.
	"	10	\ldots	$38 \cdot 50$	Slight wind from	E. ;	here and there clouds,
9th	"	G	\cdots	$48 \cdot 50$	Wind lulled.	.	clouds near horizon.
	"	13	\cdots	$44 \cdot 75$	Slight wind from	W.;	cloudy.

Remarks as to the Weather, \&c., in the Lhásá Territory.
During my stay at Lhásá, Shigátze, and in the Lhásá territory, I do not recollect either baring seen lightning or heard thunder, and, on making enquiries, I was informed that during the winter season there is neither one nor the other, though there is a little during the rains. Lightning is never known to kill the inhabitants, or to strike houses, dc. The raius (during the season) are very heavy at Shigatze, especially during the months of July and August. The snow fall at Shigatze, and on the country around, never exceeds one foot, although the water of running streams freezes if the current is not very mpid. During my journey in Tibet, from October to June, it never rained, and on only a single occasion did I observe a fall of snow of about three inches, when on my way to Penajong from the Takche village.

The inhabitants regard snow as an evil, and attribute the slight fall during the winter to the good. ness of their chief divinities and head Lamas. Should the fall ever exceed a foot, it is looked on as an evil sign, expressing the displeasure of their gods, and to propitiate them large sums of money are erpended on the priests, de. They call nnow "khá," after the word khá, meaning nothing.

I was informed that enrthquakes are unknown in the Lhásá territory proper, though slight earthquakes are said to occur in Nari-Khorsum.

Strong and high winds are very prevalent throughout the Lhásá territory.

No rain fell during my three months' residence in Lhásí. Snow full twice in the city, but only to the amount of about three inches on each occasion. The fall on the surrounding bills was somewhat heavier.

High winds were prevalent during March and April.

Note.-The thermorneter observatious at Shigátze were taken in a small room off the large one the Pundit had hired for himself in the Kunkung, or serai. There were forty to fifty people in the semi, mostly his Ladáki friends. The small room was entirely open upou one side, the thermometor langing in the middle; the open side looked to the south.

The walls of the room were of sun-dried bricks, and the roof of wool covered with parth, an that the sun's heat did not peuetrate.

At Lhásí the thermometer observations were taken in a house with a roof and wnlls ruite as thick as those in the rerai at Shigatze.

Memorandum on the Great Tibetan Road from Lhasa to Gartokh.

The Great Tibetan road between Lhasa to Gartokh is divided into twenty-two stages, of from twenty to sixty miles in lengtli, varying according to the nature of the country.

At the end of each of these stages there is a halting place, called a Tarjum, where shelter is provided for all Tibetan officials travelling along the road.

These halting places, or Tarjums, generally consist of one large house, or of several small houses, with a number of tents, sufficient together to supply shelter to at least 200 men, with their baggage and merchandize. The houses have generally walls of sun dried-bricks, and a wooden roof covered with earth.

The Tibetan officials get a change of cattle at each Tarjum. The Tarjums are in charge of a man called 'Tarjumpá, or Jalno. He is bound to have coolies, horses, yaks, and donkeys in ittendance, whenever he receives notice of the approach of a Lhasa official. The Tarjumpás are supported by the State, and they give the order to the heads* of camps and villages near these Tarjums as to supplying cattle, \&c.

From ten to fifteen men, and as many horses, are always in attendance at the Tarjums.
The horses that are kept in constant readiness form what is called a Taol.
A high official, called Shipchat, is sent every third year from Lhasa to Gartokh, in order to see how matters have been carried on.

The Shipchat, and all high officials, receive every attention on the road, and, when travelling on the public service, they and their retinue are supplied with horses, baggage animals, food, and fucl free of all charge. Their goods sometimes take as many as a thousand yaks, besides men, \&c.

A caravan of yaks, \&c., is called a Dûe. The supply of cattle, \&c., forms a kind of tax on the inhabitants, called Changshul and Thoptang.

Although the nomadic tribes and villagers receive nothing for the above, they are neverthelcss held strictly responsible for the safe transit of all goods, and are made to pay twice the value of auything lost or damaged.

The higher officials generally trade on their own account, and this adds very much to the tax upon the inhabitants, who, in addition, are often forced to buy the goods at very much over their proper value.

The inhabitants appenr to bave no remedy, as the Shipchat, or inspector of the road seems to trade just as much as the other officials.

[^19]A List of the twenty-two Tarjums, or Halting Places, between Gartolch and Lhasa, with the distances between each.

List of Ordinury Marches between Gartokh and Lhasa.

$\begin{aligned} & \underset{E}{\dot{E}} \\ & \stackrel{\rightharpoonup}{E} \\ & \underset{F}{C} \\ & \dot{O} \\ & \dot{7} \\ & \hline \end{aligned}$	Names of the daily halting places for ordinary marches.		Under the authority of whom.	Remaris.
1	Gartokh,	\cdots	Chief Garpon of Gartokh.	$\left\{\begin{array}{l} \text { Two Garpons and a Shipchat re- } \\ \text { side here. } \end{array}\right.$
	Naku Tarjum,	6	Do.	
	Langbochia,	10	Do.	$\left\{\begin{array}{l} \text { No accommodation for travellers } \\ \text { here. } \end{array}\right.$
	Nigri camp,	12	Do.	Tents.
2	Mesix Tarjum,	15	Do.	
	Dokpachu,	E	Do.	$\left\{\begin{array}{l} \text { No nccommodation for travellers } \\ \text { here. } \end{array}\right.$
	Ramothal,	20	Jongpon of Barkha.	Do.
3	Barkha Tarjum, ...	15	Do.	The Jongpon resides here.
	Langbona camp, ...	9	Do.	Near a monastery.
	Sariviah Uniah camp, ...	15	Do.	Tents. This is a large camp.
4	Thokchan Tarjum, ...	10	Purang Jongpon,	
	Nokche,	17	Do.	No accommodation here.
	Ugro (old tarjum in ruins),	14	Do.	Do.
	Ginmzar camp,	23	Dhuksum Jongpon.	$\left\{\begin{array}{l}\text { The Jongpon is called Bongpua } \\ \text { Chignp. }\end{array}\right.$
	Thukhabjor,	15	Do.	No accommodation here.
5	Tamjan Tarjum, ...	8	Do.	
	Laro,	6	Do.	No accommodation here.
	Demár camp,	23	Do.	Tents.
6	Dûksûm Tarjum, ...	12	Do.	$\left\{\begin{array}{c} \text { The Jongpon of Dhûksûm res } \\ \text { sides here, } \end{array}\right.$
	Totu camp,	20	Do.	
	Barhmalung,	14	Do.	No accommodation here.
7	Tadum Tarjum, ...	18	Jongpon of Sarka,	
	Thuku camp,	9	Do.	Tents.
	Shrikarpo camp, ...	16	Do.	Tents.
8	Niku Tarjum,	6	Do.	
	Jagang,	10	Do.	No accommodation here.
	Jhalung,	16	Do.	
9	Sarkajong Tarjum, ...	3	Do.	The Jongpon resides here.
	Upshi village,	18	Do.	Mud houses.
10	Chomokula Tarjum, ...	8	Do.	
11	Raka Thazang Tarjum,...	23	Do.	
	Gĩang-biako,	6	Do.	
12	Sang Sang Giado Tarjum,	21	Do.	
	Ge,	15	Do.	Camp.

Iist of Ordinary Marches between Gartokh and Lhasa.-(Continued.)

$\begin{aligned} & \text { gi } \\ & \text { 喿 } \\ & \text { 웅 } \\ & \dot{8} \end{aligned}$	Nnmes of the daily halting places for ordinary marches.		Under the authority of whom.	Remares.
13	Sang Sang Kau Tarjum, . Kukap camp,... Ralung village,	19 11 14	Jongpon of Sarka. Nabring Jongpon. Do.	
14	Nabring Khaka Tarjum, Larcha Nil villnge, ... Singilung village,	$\begin{array}{r} 6 \\ 11 \\ 11 \end{array}$	Do. Do. Jang Lache Jongpon.	
15	Jang Lache Tarjum, ... Chakdong village,	$\begin{aligned} & 11 \\ & 11 \end{aligned}$	Do, Do.	The Jongpon resides here.
16	Phuncholing Tarjum, ... Chamcheding village, ... Shilkar village, Chakri village,	$\begin{aligned} & 15 \\ & 10 \\ & 14 \\ & 22 \end{aligned}$	Phuncholing Jongpon. Do. Jongpon of Shigatze. Do.	$\left\{\begin{array}{c} \text { A very large villnge. The Jong- } \\ \text { pon resides here. } \end{array}\right.$
17	Shigatze Tarjum, ...	15	Do.	The Jongpen resides here.
18	Penajong Tarjum, \ldots Thakcha village, ...	$\begin{aligned} & 19 \\ & 15 \end{aligned}$	Jongpon of Penajong. Do.	The Jongpon resides here.
19	Gyangze Tarjum, Gobzi village, ... Ralung village, Zara village, ...	14 16 13 14	Jongpon of Gyangze. Do. Do. Nanganche Jongpon.	The Jongpon resides here. A Chinese post-stage.
20	Nanganchejong Tarjum, ..	14	Do.	The Jongpon resides here,
21	Pyahtejong Tarjum, ... Demalung village, ...	$\begin{aligned} & 18 \\ & 12 \end{aligned}$	Jongpon of Pyahte. Do.	The Jongpon resides here.
22	Chûshàl Tarjum, Netang village, Lhésá city,	$\begin{aligned} & 13 \\ & 18 \\ & 16 \end{aligned}$	Jongpon of Chûshul. Jongpon of Lhása.	The Jongpon resides here.
	Total miles, ...	790		

Mussoorie, 30th July 1867.
Memorandum on 600 miles of the Bralmaputra River, from its source near the Mansarowar Lake, in latitude $30 \frac{1}{2}^{\circ}$ and longitude 82°, to the junction of the Lhasa River, in latitude $29^{\circ} 22^{\prime}$ and longitude $90^{\circ} 40^{\prime}$.

When sending the Pundits to explore the country from Mansarowar to Lhasa, they were directed to make every enquiry as to the great river which was known to flow from near the Mansarowar lake to Lhasa. Care was taken not to give the river any name, it was simply called the great river, and the explorers were told to find out its name.

The Pundit on his return said that the river is called by the Nari and Ladak people the Tamjan Khamba (the horse's mouth) from its source to the junction of the Charta Sangpo, from the latter to Janglache it is called Machang Sangpo by the Dokthal people, and from Janglache to Lhasa it is called the Narichm Sanquo by the Lhasa people, the latter name being given to it because the river runs from near Nari, the country about Mansarowar, \&c.

The Nepalese, the Newars from Nepal, and the Kashmiri Mahomedans who were in Lhasa all told the Pundit that this great river was the Bralimaputra. All the Lhasa people who were questioned were unanimous in saying that, after going east for a considerable distance, it flowed down into Hindostan.

For this reason, and others to be given hereafter, the river throughout this paper will be referred to as the Brahmaputra.

The river Brahmaputra was ascertained to rise in about north latitude $30 \frac{1}{2}^{\circ}$, and east longitude 82°.

The great road along which the route-survey was carried does not follow the course of the river for the first fifty miles, but the road was probably never wuch more than ten miles north of the river.

The general direction of the river's course during the first fifty miles was, however, quite unmistakable, owing to the gigantic range visible to the south of it, the large glaciers which filled every ravine of that range evidently forming the sources of the river.

The Tamjan Tarjum, in latitude $30^{\circ} 21^{\prime}$, longitude $82^{\circ} 51^{\prime}$, was the first point of the road actually on the river. The staging-house is called Tamjan, from the Tïbetan name of the river which is Tamjan Khamba (horse's mouth). From Tamjan there was a good view up the river for a considerable distance. The Tibetans all agreed in saying that it was the main branch of the river.

At Tamjan, on the 7th of June, the river was much swollen, its current rapid, and water turbid. About forty miles south-cast of Tamjan the first large trilutary (the Chu-Nago) falls in from the north, intermediatcly only two small tribu90 miles from source. taries were noticed. Prom the junction of the Clu-Nago the great river flows south-east, and about fifty miles lower down received a still larger river, called the Chachu Sangpo, coming from the north ; this tributary was about 200 paces wide, and not very much inferior to the Mrahmaputra itself. The junction is near the Tadum monastery, a well-known balting place on the great road.

From the junction with the Cbachu the river runs four to five miles due south, and
then continues as before in a south-easterly direction for nearly thirty miles, below which it
170 miles from source. makes a great bend, and flowing southward for twenty-five miles, receives a large tributary from the south called the Shorta Sangpo, and then flowing north-east for twenty-five miles more, receives another great tributary from the north called the Charta Sangpo. The Charta Sangpo was in October about 250 paces in width, aud its tributary, the Chaka Chu, which joins it a few miles below
195 miles from source. the point where the road crosses, was 150 paces in width. The combined stream forms one of the largest tributaries, if not the largest, that was seen to join the Brahmaputra. In May the Charta Sangpo and its tributary were very slightly swollen; ice was still clinging to their elges.

From the junction of the Charta Sangpo the great river was observed to flow for about forty miles in a direction a little south of east. At this last point, near Upshi, the main road separated from the river, and the latter was not seen 260 miles from source. again till it had reached a point 100 miles further east, above the village of Napsi. Of this 100 miles of the river's course nothing positive is known ; according to the natives of the country, it had no good road along it. The Pundit conjectured that the river flows (somewhat as shown in the map by dotted lines) south of a great peak which he observed from the road.

From Nupsi the river flows east by north for twenty-five miles, and then turning sharp to the north, flows past the large town of Janglache, taking thence a northeast course for twenty-five miles more, where it is joined by a very large river,

985 miles from source.

 called the Raka Saugpo. The course of this tributary was followed by the Pundit from the Gurla pass, near Upshi, where the great road leaves the Brahmaputra, to a place called Ralung on the Nabring lake. At this place it was a large river, but when seen again lower down, at its junction with the Brahmaputra, the Raka Sangpo had become very much larger, having evidently received a large addition by one or more tributaries from the north. Just above the junction it was estimated to be about 200 paces in width. From Janglache some of the Pundit's companions took boat, and were paddled down the great river to Shigatze, a distance of eighty-five miles below Janglache, and sixty miles below the junction of the Raka Sangpo. The Puudit continued his march by land to Shigatze, crossing a good-sized tributary from the south. The great river was seen occasionally, and was evidently never so much as ten miles from the road. Hiscompanions who went by boat said the stream was smooth, and the course direct. From Shigatze the great river is again visible at the point where it receives the Penanangchu river from the south. The Penanangchu was about 150 paces wide in December. From Shigatze to Khambabarche the river was not seen for about 100 miles, the main road diverg,575 miles from source. ing considcrably to the south of the river. The Tibetans said that this portion was too rapid for boats. At Khambabarche the river, when agnin scen, was flowing in a broad deep stream. The stream flowed so easily that every one of
585 miles from source. the party went by boat from Klambabarche to Chushul, a distance of about ten miles.

From Chushul the Pundit could see the river flowing eastward for twenty or thirty miles, and 605 mies from source. Was informed that it continued to flow in that direction for a great distance.

A mile or two below Chishul the Lhasa river, called the Kichu Sangpo, joins the great river. The Kichu is navigable for small boats for about thirty miles, and in January was about 250 paces wide.

During the first week of June, at about 140 miles from its source, the water of the main branch of the Brahmaputra was very dirty and very cold, again, at the end of August, a little lower down the water was of a dirty whitish color, and very cold.

At Chushul, 585 miles from its source, the mater of the Brahmaputra was in January very clear, and again in April at the same point the water was only slightly less clear, though the river had swollen. As to the tributaries, the water of the Charta Sangpo and the Chaka Chu rivers was very clear in October, and in May, after the river had swollen, the water was atill only slightly leas clear.

The water of the Raka Sangpo river was very clear and cold in October, and in May it was slightly dirty.

The watcr of the Penanangchu was very clear in December, but dirty in April.
The Kichu Sangpo (or Lassa river) was clear in January, and again at the end of April it mas still clenr.

Streams from glaciers are always noted for laving exceedingly dirty water, from the action of the glaciers on the rocks and earth in contact with them. Those who have travelled in glacier regions are hurdly ever mistaken in deciding as to whether a stream comes from a glacier or not.

The Pundit had been acquainted with glaciers all his life. His cridence as to the water, given above, would tend to show that the main branch of the river rose among glaciers, and he says that he saw the glaciers; again, the Shorta Semgio, from his own olservation, was known to rise among glaciers, and so also does the Penanangelu; so that the tro sonthern tributaries would also appear to rise among glacicrs, but nows of the four northern tributaries appear to rise among glaciers, or, at any rate, if they do, the glaciers must be very remote or very small, as their streams were clear, even in April and May, after the rivers had begun to rise. Summing up, it appears that at Likche, near Tadum, just below the junction of the first great tributary, the Brahmaputra was in September estimated to be at least one-half wider than the Ganges at Hurdwar in December.

Between Likche and Chushul, a distance of about 450 miles, the great river is known to receive

1st-A large tributary, called Shorta Sangpo,
2nd-A very large tributary, called the Charta Sangpo, estimated to be 250 paces wide in October,
3rd-The Chaka Chu tributary of the Charta Sangpo, estimated to be 150 paces wide in October,
4th-A very large tributary, called the Raka Sangpo, estimated to be 200 paces wide in October,
5th-A large tributary, called Penanangchu, estimated to be 150 paces wide in December,
6th-A very large tributary, the Kichu Sangpo, or Lhasa river, estimated to be 250 paces wide in January.

The main river below Tadum is never fordable, even at the lroadest part, and each one of the six great tributaries, by which it is subsequeatly joined, are represented as leing rapid, deep streams, that are not fordable during summer, and only one or two can be crossed with difficulty on large horses and yaks when the rivers are low, at other times they are invariably crossed by means of boats.

Supposing the Pundit's estimates given above to be correct, a very fair idea may be formed as to the sizc of the combined stream near Chushul.

The Pundit is an accurate observer, accustomed to pacing, and to estimating distances in paces, and as far as can be tested by his ideas of the Ganges, and other knowu streams, he is not given to exaggeration.

His cstimate of one of the tributaries, viz., the Penanangchu, can be tested by direct Earopenn cridence, as Captain Turner's route along that strcam coincided with the Pundit's route for about fifty miles.

Turner says that the Penanangchu stream near its source formed no inconsiderable river in September. Lower down he crossed the river by a rude bridge. At
Pago 214. Tehukha he forled the river close to (Gyangze (Mhansu Jung), above the point where it is joined by a very large tributary from the east, which the Pundit considercl the
main stream. He again crossed it near that town, and sixteen miles lower down, he says, the river ran in a smooth stream, but was no longer fordable; he noticed a boat placed on its cud in one of the villages.

At Painom, ten miles lower, Turner found, "over the broadest part of the river, a long bridge upon nime piers of very rude structure, slight beams of timber were laid from pier to pier."

The Pundit seems to have crossed at this very spot on the 23 rd December ; he notices that the river was bridged.

In all Tibetan bridges that I have seen, the piers are very broad as compared with the spans, and it would be a moderate estimate to take nine piers of twelve fect each, aud ten spans at twenty-five fect, in all 358 feet, as the breadth of the river at this point. The Pundit puts it down at 150 paces, which gives 375 feet. The Pundit says that the river had a rapid current. The above shows that as far as the size of this particular tributary is concerned, the Pudit is remarkably accurate, and at any rate has exaggerated very little.

As far as the Brahmaputra itself is concerned, Turncr saw it from the rock above Teshoolomboo, some two or three miles from the river.

Near Shigatze, he states that "the Brahmaputra flows in a wide extended bed, and as though the soil gave it an unwilling passage, it has forced itself through many channels, and formed a multitude of islauds in its way. But though its bed appears so wide extended from hence, I was told that its principal channel is narrow, deep, and never fordable."

An account which would agree very fairly with the Pundit's description of what he saw from the same point, and also with the Pundit's more detailed description of the river at Cbaksamchori, 100 miles further down, where the deepest part was spanned by a very fragile chainbridge. I hoped that this bridge, which I had heard of, would have given conclusive evidence as to the size of the Brahmaputra near Lhasa. The Pundit was requested to note its breadth in paces; unfortunately, he found that the bridge only spanned the deepest portion, and that, in addition, a great deal of water had to be crossed beyond the bridge. The bridge itself moreover was in such a ricketty condition that the Pundit was afraid to cross it, the pcople of the country themselves invariably preferring boats. Consequently, only a rough guess could be made as to the breadth of the river.

The Pundit could only say that the river was very much larger than the Ganges or the Indus, or any other river he had seen. The depth of the stream impressed him very much. He inferred that it was rery deep, because, though the water was very clear, and the surface smooth, the bottom was nowhere visible.

The brealth of the stream lad not impressed the Pundit so much as the depth, he did not think the breadtl at Chuksamchori much more thin half greater than the Ganges, and he made the same estimate of it at Janglache, 200 miles higher up, where the volume of the river must have been much less.

After recciring so many large tributaries, it may be a matter of monder that the river was not broader, but that it should not be so is quite in accordance with what is known of the upper course of the river Indus, which rises not far from the Mansarowar lake, and flows through the same style of country as the Brahmaputra. The Indus reccives the Zanskar, a river ncarly as large as itsclf, nt Snimmo below Leh, and yet the increase in the breadth of the main stream is hardly perceptible to an ordinary observer. The same thing happens at its junction with the Dras river, and, again, it is still more remarkable at the point where the Shayok river joins the Indus, both great streams with but little difference in volume, yet the combined stream appeared to me almost narrower than cither of them separately. The increased volume of water having simply made the stream deejer.

[^20]following six tributaries, viz., the Zanskar, Dras, Saoroo, Shayok, Gilgit, and Caubul rivers, and, judging from my knowledge of these rivers, I should say they were not equal to the six tributaries of the Bralmaputra above Lhasa, as described by the Pundit; but, supposing that they are equal, and that the size of rivers are somewhat in proportion to their length of course, i.e., that they would drain the same area, I conclude that the Bralmaputra below the junction of the Lhasa river is at least equal to the Indus at Attok. The latter probably drains a country which receives very much less moisture than the Lhasa territory, but during the dry season it discharges about $24,000^{*}$ cubic feet per second.

As compared with the Indus, the Pundit's account shows that the Brahmaputra is a very much larger river. The Indus has a wooden bridge over it near Leh, 250 miles from its source, consisting of oue span of about seventy feet, and a smaller of twenty or thirty fect, and it is again spannel at Kulsi, fifty miles lower, by a woolleu bridge of one span of eighty fect, though the river intermediately receives the Zanskar, which is nearly as large as the main stream under Leh. Lower, between Kulsi and Skardo, there is another woorlen, and several rope or twig suspension-brilges, but boats are not used for ferries anywhere above Skardo, 400 miles from the source, and no portion of the river whilst in the mountains is navigable.

There is not a single wooden bridge orcr the Bralmaputra, and no twig, rope, or cane bridges. Iron suspension-bridges have been made at Janglacle, and in two or three other places, but the river appears to have been too large for the Tibetau workmanship, even in that material. According to the Pundit's account, they are all dangerous to use, the people of the country preferring boats.

The above, added to the facts that the river was not fordable at 140 miles from its source, or at any point lower down, even at the broadest parts, that ferry boats were used on the six great tributaries, as well as on the main stream, and that the main stream itself was navigable continuously for over eighty miles in one place, and again for ten miles in another, are in themselves sufficient to prove that the river at the lowest point was a gigantic stream. The Tibetans all spoke of the Brahmaputra as a very great river. They call all very large rivers Saugpo, and as that term is applied to four of the tributaries enumerated above, it is to be supposed that the conjoint stream is, in their estimation, a very large one indeed.

The navigation at 13,500 feet above the sea, rude though it may be, is an extraordinary fact; navigation of any kind at such an altitude being quite unknown in any part of either the old world or of the new. If the Pundit had any doubt as to the great volume of the river, it was completely removed by a squall which suddenly swept across the broad cxpanse of water; the wind raising such large waves that the small fleet of loats carrying the Pundit and his companions only escaped swamping by taking to the nearest shore.

Any comparative estimate by eye of such a great river is of course very deceptive, but, as has alrcady been shown in the case of the Penanangchu, a tolerable estimate may be made in that way of a moderate-sized river.

Assuming that the Pundit's other estimates of the main stream and its tributaries were as accurate as that of the Penanangchu, it would follow that in the dry scason (December and January) the resulting stream was composed of the stream near Thadum, which was at least one and a-half times as large as the Ganges in Scptember (or say only the same size in December), and of six other streams, each of which on the avcrage was probably larger than the Ganges, or, say in all, of a discharge of water equal to seven times that of the Ganges at Hurdwar in December.

The Ganges at Hurdwar was selected for comparison, as it was well-known to the Pundit, and had lately been re-crossed by him. Its disclarge may be taken at about $5,000 \dagger$ cubic feet

[^21]
[^0]: －The Great Thedolites which are cmplored Ior the Principal Trinngulation hare azimuthal circles of 24 to 36 inches in diameter，which are read by 5 oquidistnit mieroscopers，nud rertical circles of 15 lo 18 inches in diameter，whill are read by 2 miuroscopes．The syetem of observing the principal horizontal angles is as followe：－The telescope is pointed to some convenient aigmal，with the zero microscope set to $0^{\circ} 0^{\prime}$ ；the surroubding stations are then olserved in order round the horizon，en entire revolution of tho instrument bringing the teleacope back to the referring－mark，which is afnin observed；this completes a single round of mensures，at each of which all the 5 microscopes are rend；fhe round is，as a rule，repeated twice，but if the 3 memaures of any angle differ by moro thinn $2^{\prime \prime}$ ，the obscriations of that nngle are rcpented as often as may be considered desirable；the telescope is then furned through a semi－revolulion in altitude nad in azimuth，and pointed to the referring－mark；the zero microscope is thus brought orer 180° on the azimuthal circle，aud the fuce of the vertiral circle becomes transposed from the obsorver＇s left to his right linnd，or wice versd；three rounde of mensures are then taken，and this completea an entire group of observations of ench signal，on＂foce right and fare left，＂ and on 10 equidistant graduations of the azimuthal circle．Fire complete groups of meusures are invariably made in a similar manner，the setting of the zero microscope being shifted in cuch group，so ns to being 50 equidistmit grarluntions under the microscopes，and to vary the position of the axis in ite aorket ns much as possible，in the conrso of the whale of the observations to ench signal．For this purpose the nre， 72° ，betwecn the microscopee，is addent to the arr， $7^{\circ} 12^{\prime}$ ，which expresses tho fiftieth part of the circumberener of the circle，to nbtuin the requisite whange of graduation；thus the sumees－ sive setting of tho tero microscope are $0^{\circ}, 79^{\circ} 12^{\prime}, 158^{\circ} 24^{\prime}, 237^{\circ} 36^{\prime}$ and $316^{\circ} 48^{\prime}$ ．Thu aignale whicli are employed are infnriably luminous，belintropes by day，and lamps by night，most of the observations being taken by night，when the stmoophere is ugually most faromble．

 The quality of the principal triangulation with the Great Theodolites is tested by the probnble errors of the observed angles，and by the triangular errore．The nature of the prolinhle crror may be defincd us being surli that the chances of the setual error erceeding or falling short thereof are equal ；it is determined by a formula which Inkes into coneidera－ tion the ancidental errors of carh aingle observation，and of the graduntions of the circles on which the mensures are madle． The triangular error in the nmount by which the sum of the olserved values of the throe nugles of a trianglo exceeds or
 falls short of $180^{\circ}+$ the epherical exces． falls short of $180^{\circ}+$ the epherical exces．

[^1]: - This Har is designated as I_{b} in the "Account of the Meseurement of the Lough Fogle Barc," snd bloo in the " Comprarisone of Standards of Length."

[^2]: - A denotes the 10 -foot iron standard of the G. T. Surrey; M, N, R, S, T, T, V, W are the brese ecales apperthining to the corresponding base-line comprensated microscopes.

[^3]: - The two Pundita being atill employed on exploratione, their mames are, for obrions reasons, amitted.
 \dagger Vide Captain Montgomerie's letter of instructiona in Aprendia.

[^4]: - Only one large ecxant was taken to Lhase.
 \dagger From the Britial ralley of that name north-enst of Simla.

[^5]: - The Brahmapntrs river.
 + The margin of the lake wes frozen.
 I With reference to this, the Pundit on being queatiened asid that the pacee of this portion, and of one or two other parta, wert counted on his relurin jonmey.

[^6]: - Or Ctialpo.

[^7]: - The mani-chualior, or prayer-wheel.
 \dagger This prayer is sonctimes engraved on the exterior of the whecl.
 \ddagger The $\mathbf{P}^{\mathbf{P}}$ undit found this proyer-whecl free of all examination by Cuelom House or other ampinis. In order to take full advantige of this immunity, averal copper prayer-whecla have been made up in the G. T. S. workeliop, fited for cwapases, de.; these will be deseribed hereafter.
 § The Tïhetana are rery curimus as to theso drinking howls or cupa, they are made by hollowing out a piece of hard woud, those made from knots of trees, being more especially ralued. A good bowl is often bound with silvor. The wood from which they are made does not grow in Tibet, and the cups consequently erll for largo amounts.

[^8]: - A MS. map in thẹ G. T. Survey Office.
 + See puge 255 Vol. XII " Asintic Researches," London exlition.
 \ddagger The schlagintweit's longitudo of Kathmandd in terma of the G. T. Survey is $85^{\circ} 15^{\prime} \mathbf{3 4 \prime}$.
 § Cumpiled in the : :urveyor Genoral's Ollice, Calcutta, April 1850.

[^9]: - The direction of the mand between Pialtejeng and Lhnen ie rather more favornble for making une of the Pundie's Intitudes. If used they would gire a pace of $2: 86$ fret. n prool that the pace was longer than betreen Tadúm and Kallmanilu, This pace would jut Lhass in longitude $91^{\circ} 3^{\prime} 36^{\prime \prime}$.

[^10]: - The Tibetans atro their tea with wnter, meal, and hutter; the ten learcs are always caten.
 + A Tibcton nlears carrice menl with him, and mokes sutton whenerer he feela hungry.
 \ddagger The atarlight in Tibel, as in all rery elepated regione, is particularly bright.

[^11]: - Witha rery hish reak al ite wralem extremity, culled Harkiang. A mery high peak was also noticed to the eouth between the Kika and Itralumpuiria vallegy.
 + There are no lake known in the Himalayas higher than 16,000 feet, but posaibly one of thove heard of by the Pundit moy turu out to be a littie Lighur.

[^12]: - Inside a house.

[^13]: a Inhatitnats of the country noriheant of Simla, who possese tho privilege of travelling through the Lháá territory without queation.

[^14]: * The Ghoorkhas ruffered their Aret defeat at the hands of the Tibetane on the Tingri Maidsn in 1792. Kúti and meveral other frontier posta of Nepal were taken from the Ghoorkhas in consequence, and the Lhéaí boundary was carried considerably to tho south.

[^15]: - Zedoary, a picy plant comewhat like ginger in its leaves, but of a erret ment.

[^16]: - Officially ealled Lopehnt, his own name in this caec being Chyanggonboo.

[^17]: - Thermonetrical obserrations were taken here.

[^18]: - Thermometrical obervations were taken here.

[^19]: - The heade of villuges are callod Gánhos.

[^20]: The Indus at Attok has run a course of about 700 miles, during which it has received the

[^21]: - 32,000 culic feet according to Dr . Lord's menemrement. 16,000 do. Colonol Cumningham's calimato.
 \dagger More correctly 5,500 cubic fect.

